K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

4A=1+1/4+1/42+......+1/498

4A - A = ( 1+1/4+1/42+..........+1/498) - ( 1/4+1/42+1/43+.......+1/499)

3A= 1-1/499

A= 1/3 - 1/499 : 3

Mà 1/499 : 3 > 0 => 1/3 - 1/499 : 3 < 1/3

                          Hay A < 1/3

 

14 tháng 8 2017

a/ Rút gọn:

\(A=\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{99}}.\)

=> \(4A=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{98}}\)

=> \(4A=1+\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{98}}+\frac{1}{4^{99}}\right)-\frac{1}{4^{99}}\)

<=> \(4A=1+A-\frac{1}{4^{99}}\)

=> \(3A=1-\frac{1}{4^{99}}\)

=> \(A=\frac{1}{3}-\frac{1}{3.4^{99}}\)

b/ Ta có: \(A=\frac{1}{3}-\frac{1}{3.4^{99}}< \frac{1}{3}\)

26 tháng 8 2021

\(S=1-2+2^2-2^3+...+2^{2012}-2^{2013}\)

\(\Rightarrow2S=2-2^2+2^3-2^4+...+2^{2013}-2^{2014}\)

\(\Rightarrow2S+S=2-2^2+2^3-...-2^{2014}+1-2^2-2^3+...-2^{2013}\)

\(\Rightarrow3S=1-2^{2014}\)\(\Rightarrow3S-2^{2014}=1-2^{2015}\)

4 tháng 10 2017

12 tháng 5 2022

Đặt N = 1 + 2 + 22 +...+ 22012

2N = 2 + 22 + 23 +...+ 22013

2N - N = (2 + 22 + 23+....+ 22013) - (1 + 2 + 22 +....+ 22012)

N = 22013 - 1

Thay N vào M ta được:

\(M=\dfrac{2^{2013}-1}{2^{2014}-2}=\dfrac{2^{2013}-1}{2\left(2^{2013}-1\right)}=\dfrac{1}{2}\)
12 tháng 5 2022

Đặt \(N=1+2+2^2+...+2^{2012}\)

\(2N=2+2^2+2^3+...+2^{2013}\)

\(2N-N=\left(2+2^2+2^3+...+2^{2013}\right)-\left(1+2+2^2+...+2^{2012}\right)\)

\(N=2^{2013}-1\)

Thay N vào M ta được:

\(M=\dfrac{2^{2013-1}}{2^{2014}-2}=\dfrac{2^{2013}-1}{2\left(2^{2013}-1\right)}=\dfrac{1}{2}\)

15 tháng 10 2021

\(a,A=1+3+3^2+...+3^{125}\\ \Rightarrow3A=3+3^2+3^3+...+3^{126}\\ \Rightarrow2A=3^{126}-1\\ \Rightarrow A=\dfrac{3^{126}-1}{2}\\ c,2A=3^{2x}-1\\ \Rightarrow3^{126}-1=3^x-1\\ \Rightarrow x=126\)

\(d,A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{124}+3^{125}\right)\\ A=\left(1+3\right)+3^2\left(1+3\right)+...+3^{124}\left(1+3\right)\\ A=\left(1+3\right)\left(1+3^2+...+3^{124}\right)\\ A=4\left(1+3^2+...+3^{124}\right)⋮4\)