Tìm 1 số tự nhiên có 3 chữ số mà 2 chữ số đầu cũng như 2 chữ số cuối đều lập thành các số chính phương và số này gấp 4 lần số kia
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta xét thấy số chính phương là bình phương của một số tự nhiên (vd: 4;9;16;....)
=> 2 chữ số cuối sẽ là a^2
Nếu a=9 thì a^2=81 ( không thỏa mãn đk)
Nếu a=8 thì a^2=64 và chữ số đầu là 1
=> 64:16=4
vậy số đó là 164
gọi số cần tìm là abc .
ta có :
ab ; bc là lập thành các số chính phương .
các số chính phương có 2 chữ số :
16 ; 25 ; 36 ; 49 ; 64 ; 81 .
tách dãy số trên thành từng cặp mà chữ số hàng đơn vị của số thứ nhất bằng hàng chục của số thứ 2 , ta có :
36 và 64
81 và 16
16 và 64
mà 36 và 64 không thỏa mãn yêu cầu vì 64 : 36 = 2
81 và 16 cũng không thỏa mãn , vậy chỉ có 16 và 64
số này là :
164
đ/s : 164
Gọi số cần tìm là \(\overline{abc}\) (a,b,c \(\in N\), 10 > a,b,c \(\ge0\))
TH1: \(\overline{ab}=4\overline{bc}\)
=> \(10a+b=40b+4c\)
=> \(10a=39b+4c\)
Mà b\(\ge1,c\ge0\) => \(39b+4c\ge39\)
=> 10a \(\ge39\)
=> a \(\ge4\)
Do \(\overline{ab}\) là số chính phương
=> \(\overline{ab}\in\left\{49;64;81\right\}\)
- Với \(\overline{ab}=49\) => \(\left\{{}\begin{matrix}a=4\\b=9\end{matrix}\right.\) => 4c = -311 (loại)
- Với \(\overline{ab}=64=>\left\{{}\begin{matrix}a=6\\b=4\end{matrix}\right.\) => 4c = - 96 (loại)
- Với \(\overline{ab}=81=>\left\{{}\begin{matrix}a=8\\b=1\end{matrix}\right.\) => 4c = 41 => c = \(\dfrac{41}{4}\) (loại)
TH2: \(4\overline{ab}=\overline{bc}\)
=> 40a + 4b = 10b + c
=> 40a = 6b + c
Mà \(b\le9;c\le9\)
=> 6b + c \(\le63\)
=> 40a \(\le63\)
=> a \(\le1\)
=> a = 1
Mà \(\overline{ab}\) là số chính phương
=> \(\overline{ab}\) = 16
=> b = 6
=> c = 4
Vậy số cần tìm là 164
2 chữ số đầu là số có 2 chữ số là M=10a+b và 4M<100<==>M<25==>M=16
Thấy 4M=64 cũng là số chính phương nên chỉ có duy nhất 1 số là 164.
tìm 3 chữ số đầu là nếu thử la 32^2=1024 loai
suy ra 3 chữ số đầu là 31^2 =961
giờ thì tìm 2 chữ số còn lại thử là 5^3 =125 loại
suy ra 2 chữ số cuối là 4^3=64 chọn
vậy số cần tìm là 96164
chuân 100% đó