cho biểu thức \(A=\frac{2n+2}{2n-4}\)
với n thuộc Z. tìm n để A là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A là phân số chỉ khi \(2n-4\ne0\Rightarrow n\ne2\)
b, A \(\in Z\)\(\Leftrightarrow2n+2⋮2n-4\Leftrightarrow2n-4=6\Rightarrow6⋮2n-4\)
Vì \(2n-4\)là số chẵn nên :
\(2n-4=-6\Rightarrow2n=-2\Rightarrow n=-1\text{và }A=0\)
\(2n-4=-2\Rightarrow2n=2\Rightarrow n=1\text{và }A=-2\)
\(2n-4=2\Rightarrow2n=6\Rightarrow n=3\text{và }A=4\)
\(2n-4=6\Rightarrow2n=10\Rightarrow n=5\text{và }A=2\)
Vậy ....
a) Để A là phân số thì : 2n - 4 ≠ 0=>n ≠ 2
Vậy với n ≠ 2 thì A là phân số
b) Ta có A = 2 n + 2 2 n − 4 = 1 + 6 2 n − 2 = 1 + 3 n − 2
Để A là số nguyên thì 3 ⋮ n - 2 hay (n - 2) ∈ U(3)
n − 2 = 1 ⇒ n = 3 n − 2 = − 1 ⇒ n = 1 n − 2 = 3 ⇒ n = 5 n − 2 = − 3 ⇒ n = − 1
Vậy n ∈ − 1 ; 1 ; 3 ; 5 thì A là số nguyên.
a) Để A là một phân số
=> 2n-4 khác 0
=>2n khác 4
=> n khác 2
Vậy n khác 2 và n thuộc n thì A là một phân số .
b) Để A là số nguyên
=>2n+2 chia hết cho 2n-4
=>2n-4+6 chia hết cho 2n-4
Vì 2n-4 chia hết cho 2n-4
=> 6 chia hết cho 2n-4
=> 2n-4 thuộc Ư(6)
=> 2n-4 thuộc tập hợp 1;2;3;6;-1;-2;-3;-6
=>2n thuộc tập hợp 5;6;7;10;3;2;1;-2
=> n thuộc tập hợp 5/2;3;7/2;5;3/2;1;-1
Vì n thuộc N => n thuộc tập hợp 3;5;1
Sau đó bạn thử lại với từng trường hợp của n rồi kết luận là n thuộc tập hợp 3;5;1
Bạn bạn ơi hãy tk cho mik nha ! Mik đang âm điểm nek .
CHÚC CÁC BẠN HỌC THẬT TỐT ^.^
\(a)\) Để \(A\) là phân số thì \(2n-4\ne0\)
\(\Leftrightarrow\)\(n\ne2\)
Vậy với \(n\ne2\) thì biểu thức A là phân số .
\(b)\) Ta có : \(\left(2n+2\right)⋮\left(2n-4\right)\) thì A là số nguyên :
\(\Leftrightarrow\)\(2n+2=2n-4+6\) chia hết cho \(2n-4\)\(\Rightarrow\)\(6⋮\left(2n-4\right)\)\(\Rightarrow\)\(\left(2n-4\right)\inƯ\left(6\right)\)
Mà \(Ư\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
Suy ra :
\(2n-4\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(3\) | \(-3\) | \(6\) | \(-6\) |
\(n\) | \(2,5\) | \(1,5\) | \(3\) | \(1\) | \(3,5\) | \(0,5\) | \(5\) | \(-1\) |
Vậy \(n\in\left\{3;1;5;-1\right\}\)
ta có : A= \(\frac{2n+2}{2n-4}\)=\(\frac{2n-4+6}{2n-4}=\frac{2n-4}{2n-4}+\frac{6}{2n-4}\)
= \(1+\frac{6}{2n-4}\)
Để A là số nguyên thì : \(1+\frac{6}{2n-4}\)là số nguyên
=> 2n - 4 \(\in\) Ư( 6 )={ 1 ; - 1 ; 2 ; - 2 ; 3 ; - 3 ; 6 ; - 6}
2n - 4 =1 2n -4 = - 1 2n - 4 = 2 2n - 4 = - 2
n =\(\frac{5}{2}\) n = \(\frac{3}{2}\) n = 3 n = 2
2n - 4 = 3 2n - 4 = -3 2n - 4 = 6 2n -4 = -6
n = \(\frac{7}{2}\) n = \(\frac{1}{2}\) n = 5 n = -1
mà n là số nguyên nên :
n = {3; 2 ;5 ; -1}
\(\frac{2n+2}{2n-4}\)=\(\frac{2n-4+6}{2n-4}\)=\(1+\frac{6}{2n-4}\)
Để A nguyên thì \(\frac{6}{2n-4}\) nguyên
=>\(2n+6\inƯ\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{-2;-4;0;-6\right\}\)