K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2017

1, xy(x+y)+yz(y+z)+xz(x+z)+2xyz

= x2y+xy2+y2z+yz2+x2z+xz2+2xyz

=(x2y+x2z+xz2+xyz) + ( xy2+y2z+yz2+xyz)

=x(xy+xz+z2+yz)+y(xy+yz+z2+xz)

=(xy+xz+yz+z2).(x+y)

=(x(y+z)+z(y+z)).(x+y)

=((y+z).(x+z)).(x+y)= (x+y)(x+z)(y+z)

2. 3(x-3)(x-7)+(x-4)2+48

=3(x2+4x-21)+x2-8x+16+48

=4x2-4x+1 = (2x-1)2

Thay x=0,5 vào bt trên, ta có : (2.0,5 -1)2=0

3, x2-6x+10

= x2-2.3.x+9+1

=(x-3)2+1 \(\ge\)1 >0 ( do (x-3)>=0 với mọi x)

=> x26x+10 >0 với mọi x

4x-x2-5

=-(x2-4x+5)

=- (x2-2.2x+4+1)

= - ((x-2)2+1) = -(x-2)2-1\(\le\)-1 < 0 ( do (x-2)2\(\ge\)0 với mọi x => - (x-2)2\(\le\)0 với mọi x)

vậy, 4x-x2-5<0 với mọi x

5 tháng 7 2017

Ta có : x2 - 6x + 10 

= x2 - 6x + 9 + 1 

= (x - 3)2 + 1

Mà (x - 3)2 \(\ge0\forall x\)

Nên : (x - 3)2 + 1 \(\ge1\forall x\)

=> (x - 3)2 + 1 \(>0\)(đpcm)

18 tháng 1 2018

Chị cũng là fan của BTS à

18 tháng 1 2018

Chị hâm mộ V đúng không

27 tháng 10 2016

a)\(f\left(x\right)=x^4+2x^3-x-2\)

\(=x^4+2x^3+x^2-x^2-x-2\)

\(=\left(x^2+x\right)^2-\left(x^2+x\right)-2\)

Đặt \(x^2+x=t\) ta có:

\(=t^2-t-2\)\(=\left(t-2\right)\left(t+1\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x+1\right)\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+1\right)\)

23 tháng 10 2018

\(\left(1+2x\right).\left(1-2x\right)-x.\left(x+2\right).\left(x-2\right)\))

\(=1-\left(2x\right)^2-x.x^2-2^2\)

\(=1-4x^2-x^3-4\)

Ko bt có đúng ko nữa

23 tháng 10 2018

( 1 + 2x ) ( 1 - 2x ) - x ( x + 2 ) ( x - 2 ) 

= 1 - 4x2 - x ( x2 - 4 )

= 1 - 4x2 - x3 + 4x

= - ( x3 + 4x2 - 4x - 1 )

= - ( x3 - x2 + 5x2 - 5x + x - 1 )

= - [ x2 ( x - 1 ) + 5x ( x - 1 ) + ( x - 1 ) ]

= - ( x - 1 ) ( x2 + 5x + 1 )

8 tháng 4 2016

x(x+2)(x^2+2x+2)+1 = (x^2+2x)(x^2+2x+1)+1

Đặt x^2+2x+1=y ta được:

(y-)(y+1)+1=y^2-1+1=y^2

= (x^2+2x+1)^2

= ( x + 1 )^4

16 tháng 10 2017

x4+x3+2x2+x+1=x4+x3+x2+x2+x+1=(x4+x3+x2)+(x2+x+1)

                                                      =x2(x2+x+1)+(x2+x+1)

                                                       =(x2+x+1)(x2+1)

19 tháng 10 2017

=(x^4+2x^2+1)+(x^3+x)

=(x^2+1)^2+x(x^2+1)

(x^+1)*(x^2+1+x0

11 tháng 9 2021

\(\left(xy+1\right)^2-\left(x-y\right)^2=\left(xy+1+x-y\right)\left(xy+1-x+y\right)\)

\(=x^2y^2+xy-x^2y+xy^2+xy+1-x+y+x^2y+x-x^2+xy-xy^2-y+xy-y^2\)

\(=x^2y^2+2xy-x^2-y^2+1\)

24 tháng 10 2018

\(x^4+x^3+2x^2+x+1=x^4+x^2+x^3+x+x^2+1\)

\(=x^2\left(x^2+1\right)+x\left(x^2+1\right)+1\left(x^2+1\right)\)

\(=\left(x+1\right)\left(x^2+x+1\right)\)

24 tháng 10 2018

cái cuối là \(\left(x^2+1\right)\left(x^2+x+1\right)\)

5 tháng 3 2019

x^5+2x^4+2x^3+2x^2+2x+1

=(x^5+x^4)+(x^4+x^3)+(x^3+x^2)+(x^2+x)+(x+1)

=x^4(x+1)+x^3(x+1)+x^2(x+1)+x(x+1)+(x+1)

=(x+1)(x^4+x^3+x^2+x+1)