Chứng minh số sau chia hết cho 125:
\(A=\left(2^{10}+1\right)^{10}\)
Giải giùm mình nhanh nhanh nha các bạn! Cảm ơn trước nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
11...1 chia hết cho 81= 11...1 chia hết cho 9*9
- tổng các chữ số là: 1+1+1+1+1+1...+1= 81 chia hết cho 9 =9 chia hết cho 9
nên 111...1 chia hết cho 81.
bạn vào link này
nhưng vẫn tiick cho mình nha
https://pitago.vn/question/chung-minh-rang-a-so-gom-81-chu-so-1-chia-het-cho-81-b-4105.html
ok t ick nhá
\(8^{32}=\left[2^3\right]^{32}=2^{96}\)
\(2^{96}+2^{100}\)
\(=2^{96}.1+2^{100}\)
\(=2^{96}.\left(1+2^6\right)\)
\(=2^{96}.17\)
\(=2^{95}.2.17\)
\(=2^{95}.34\)
Vì 34\(⋮\)34 \(\Rightarrow\)tổng này chia hết cho 34
a) Gọi ba số chẵn liên tiếp là: a; a+2; a+4
Ta có: a+a+2+a+4=3a+6
Vì 6 chia hết cho 6=>3a+6 chia hết cho 6
=>tổng của ba số chắn liên tiếp chia hết cho 6
ta có:C=1+3+32+33+...+311
=(1+3+32)+(33+...+311)
=1.(1+3+32)+...+39.(1+3+32)
=1.13+...+39.13
=(1+...+39).13 chia hết cho 13
b.C=1+3+32+33+...+311
=(1+3+32+33)+(...+311)
=1.(1+3+32+33)+(...+311)
=1.(1+3+32+33)+...+38.(1+3+32+33)
=1.40+...+38.40
=(1+...+38).40 chia hết cho 40