cho tam giác abc vuông tại a có ab=6cm ac=8cm ah là đường cao
a tính bc
b tìm hình chiếu của ab và ac lên bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH vuông tại H có HF là đường cao ứng với cạnh huyền AB
nên \(AF\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HE là đường cao ứng với cạnh huyền AC
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)
Bài 2:
a: Xét ΔABC vuông tại B có
\(AB^2+BC^2=AC^2\)
hay BC=20(cm)
Xét ΔABC vuông tại B có BH là đường cao ứng với cạnh huyền AC
nên \(\left\{{}\begin{matrix}BA^2=AH\cdot AC\\BC^2=CH\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=9\left(cm\right)\\CH=16\left(cm\right)\end{matrix}\right.\)
a. Xét ΔABC và ΔHBA :
\(\widehat{A}\) = \(\widehat{H}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔABC \(\sim\) ΔHBA (g.g)
b. Xét ΔABC vuông tại A
Theo định lý Py - ta - go ta có:
BC2 = AB2 + AC2
BC2 = 62 + 82
\(\Rightarrow\) BC2 = 100
\(\Rightarrow\) BC = \(\sqrt{100}\) = 10 cm
Ta có: ΔABC \(\sim\) ΔHBA
\(\dfrac{AH}{CA}\) = \(\dfrac{BC}{BA}\)
\(\Rightarrow\) \(\dfrac{AH}{8}\) = \(\dfrac{10}{6}\)
\(\Rightarrow\) AH = 13,3 cm
\(\dfrac{BH}{BA}\) = \(\dfrac{BC}{BA}\)
\(\Rightarrow\) \(\dfrac{BH}{6}\) = \(\dfrac{10}{6}\)
\(\Rightarrow\) BH = 10 cm
c. Xét ΔAIH và ΔBAC :
\(\widehat{AIH}\) = \(\widehat{BAC}\) = 900
Ta có: \(\widehat{IAH}\) = \(\widehat{ACB}\) (phụ thuộc \(\widehat{HAC}\) )
\(\Rightarrow\) ΔAIH \(\sim\) ΔBAC (g.g)
\(\Rightarrow\) \(\dfrac{AI}{IH}\) = \(\dfrac{AC}{AB}\)
\(\Rightarrow\)\(\dfrac{AI}{AK}\) = \(\dfrac{AC}{AB}\) (vì AKIH là HCN)
\(\Rightarrow\) AI . AB = AK. AC(đpcm)
a) Xét ΔABC và ΔHBA ta có:
\(\widehat{B}\) chung
\(\widehat{BAC}=\widehat{BHA}=90^0\)
⇒ΔABC∼ ΔHBA
b) Xét ΔABC vuông tại A, áp dụng định lí pytago ta có:
\(BC^2=AB^2+AC^2\)
\(=6^2+8^2\)
\(=100\)
\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)
Vì ΔABC ∼ ΔBHA(cmt)
\(\Rightarrow\dfrac{AB}{BH}=\dfrac{AC}{AH}=\dfrac{BC}{AB}hay\dfrac{6}{BH}=\dfrac{8}{AH}=\dfrac{10}{6}=\dfrac{5}{3}\)
Suy ra: \(AH=\dfrac{8.3}{5}=4,8\left(cm\right)\)
\(BH=\dfrac{6.3}{5}=3,6\left(cm\right)\)
1: \(S=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)
2: Xét ΔABC vuông tại A có AH là đường cao
nên \(AC^2=HC\cdot BC\)
3: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
=>AM/AC=AN/AB
Xét ΔAMN vuông tại A và ΔACB vuông tại A có
AM/AC=AN/AB
Do đó: ΔAMN∼ΔACB
TK
1: S = 8 ⋅ 6 2 = 24 ( c m 2 ) 2: Xét ΔABC vuông tại A có AH là đường cao nên A C 2 = H C ⋅ B C 3: Xét ΔAHB vuông tại H có HM là đường cao nên A M ⋅ A B = A H 2 ( 1 ) Xét ΔAHC vuông tại H có HN là đường cao nên A N ⋅ A C = A H 2 ( 2 ) Từ (1) và (2) suy ra A M ⋅ A B = A N ⋅ A C =>AM/AC=AN/AB Xét ΔAMN vuông tại A và ΔACB vuông tại A có AM/AC=AN/AB Do đó: ΔAMN∼ΔACB
Bài 1:
a: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC^2=6^2+8^2=100\)
=>BC=10(cm)
Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)
nên \(\widehat{C}\simeq37^0\)
=>\(\widehat{B}=90^0-37^0=53^0\)
b: Xét ΔHAB vuông tại H có HG là đường cao
nên \(AG\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HK là đường cao
nên \(AK\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AG\cdot AB=AK\cdot AC\)
a, Áp dụng HTL: \(\left\{{}\begin{matrix}BC=\dfrac{AB^2}{BH}=20\left(cm\right)\\AC=\sqrt{BC^2-AB^2}=10\sqrt{3}\left(cm\right)\\AH=\dfrac{AB\cdot AC}{BC}=5\sqrt{3}\left(cm\right)\end{matrix}\right.\)
b, Vì \(\widehat{AFH}=\widehat{AEH}=\widehat{FAE}=90^0\) nên AFHE là hcn
Do đó \(AF=HE\)
Áp dụng HTL: \(AE\cdot EB=EH^2\Rightarrow AE\cdot EB=AF^2\)
b: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: AF=HE(1)
Xét ΔAHB vuông tại H có HE là đường cao
nên \(EA\cdot EB=EH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot EB=AF^2\)
a: BC=căn 6^2+8^2=10cm
b: Hình chiếu của AB là HB
Hình chiếu của AC là HC