K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2022

\(\Leftrightarrow x\left(y+1\right)=y+16\Rightarrow x=\dfrac{y+16}{y+1}=1+\dfrac{15}{y+1}\left(y\ne-1\right)\)

Để x nguyên thì y+1 là ước của 15

\(\Rightarrow y+1=\left\{-15;-5;-3;-1;1;3;5;15\right\}\)

\(\Rightarrow y=\left\{-16;-6;-4;-2;0;2;4;14\right\}\)

\(\Rightarrow x=\left\{0;-2;-4;-14;16;6;4;2\right\}\)

23 tháng 5 2016

a) \(xy+x+2y=5\Leftrightarrow xy+x+2y+2=7\Leftrightarrow\left(y+1\right)\left(x+2\right)=7\)

Vì x,y là số tự nhiên nên \(x,y\in N\)\(x,y\ge0\)\(\Rightarrow y+1\ge1;x+2\ge2\)

Từ đó ta có : 

\(\hept{\begin{cases}x+2=7\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=0\end{cases}}}\) 

b) \(xy+2x+2y=-16\Leftrightarrow xy+2y+2x+4=-12\Leftrightarrow\left(y+2\right)\left(x+2\right)=-12\)

Lần lượt xét từng trường hợp , ta được : 

(x;y) = (-14; -1) ; (-8 ; 0) ; (-6 ; 1) ; (-5 ;2) ; (-4 ;4)

23 tháng 5 2016

a) \(\left(x+2\right)\left(y+1\right)=7=1.7=7.1\)

Hoặc \(\hept{\begin{cases}x+2=7\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=0\end{cases}}}\in N\)

Hoặc\(\hept{\begin{cases}x+2=1\\y+1=7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\notin N\\y=6\end{cases}}\)

Vậy \(\left(x;y\right)=\left(5;0\right)\)

b)\(\left(x+2\right)\left(y+2\right)=-1.12=-12.1=-2.6=-6.2=-3.4=-4.3\)

tương tự giải 6 TH là được

11 tháng 5 2022

\(\overline{xy}=10.x+y\) Khi đó \(\dfrac{\overline{xy}}{x+y}=\dfrac{10x+y}{x+y}\)

Mặt khác \(\dfrac{10x+y}{x+y}=\dfrac{100x+10y}{10\left(x+y\right)}=\dfrac{19\left(x+y\right)+81x-9y}{10\left(x+y\right)}=\dfrac{19}{10}+\dfrac{9\left(9x-y\right)}{10\left(x+y\right)}\ge\dfrac{19}{10}\)

Do đó, \(\dfrac{\overline{xy}}{x+y}\) nhận giá trị nhỏ nhất bằng \(\dfrac{19}{10}\) khi \(9x-y=0\) hay \(x=1,y=9\)

Vậy số cần tìm là 19

22 tháng 1 2022

\(\overline{xy}=10.x+y\) . Khi đó, \(\frac{\overline{xy}}{x+y}=\frac{10x+y}{x+y}\)

Mặt khác, \(\frac{10x+y}{x+y}=\frac{100x+10y}{10\left(x+y\right)}=\frac{19\left(x+y\right)+81-9y}{10\left(x+y\right)}=\frac{19}{10}+\frac{9\left(9x-y\right)}{10\left(x+y\right)}\ge\frac{19}{10}\)

Do đó, \(\frac{\overline{xy}}{x+y}\) nhận giá trị nhỏ nhất \(\frac{19}{10}\) khi \(9x-y=0\) , hay x = 1, y = 9.

Vậy số cần tìm là 19

22 tháng 1 2022

MÌNH KO HIÊU

7 tháng 3 2023

=> 1 = 1/x + 1/y + 2/xy

=> xy/xy = y/xy + x/xy + 2/xy

=> xy/xy = (y+x+2)/xy

=> xy = y+x+2

=> xy - x - y = 2

=> xy - x - y + 1 = 3

=> (x-1)(y-1) = 3

Do x,y ∈ N* nên x-1, y-1 ∈ N

=> (x-1, y-1) = (1,3); (3,1)
=> (x,y)= (2,4); (4,2) (thử lại thỏa mãn)
Vậy (x,y)= (2,4); (4,2)

5 tháng 1 2022

Giai

Vì x,y là số tự nhiên nên x ≥ 0 và y ≥ 0
cho nên xy 3x , 3y đều ≥ 0
cho nên để biểu thức = 0 . Thì:
xy = 0
3x = 0
3y = 0
=> x = y = 0

20 tháng 12 2023

4x+4y+xy=0

=>4x+xy+4y=0

=>x(4+y)+4y+16=-16

=>(y+4)(x+4)=-16

=>\(\left(x+4;y+4\right)\in\left\{\left(1;-16\right);\left(-16;1\right);\left(-1;16\right);\left(16;-1\right);\left(2;-8\right);\left(-8;2\right);\left(-2;8\right);\left(8;-2\right);\left(4;-4\right);\left(-4;4\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(-3;-20\right);\left(-20;-3\right);\left(-5;12\right);\left(12;-5\right);\left(-2;-12\right);\left(-12;-2\right);\left(-6;4\right);\left(4;-6\right);\left(0;-8\right);\left(-8;0\right)\right\}\)

mà x,y là các số tự nhiên

nên \(\left(x,y\right)\in\varnothing\)

20 tháng 12 2023

4x+4y+xy=0
vậy ta chỉ có 1 trường hợp:
4 . 0+ 4.0+0.0=0 
nếu muốn 3 số 4x+4y+xy=0 thì cả 3 số phải bằng 0 (x E N)
=> X=0, y=0