K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2020

a . Xét ΔABC ⊥ tại A , ta có :

\(\widehat{ABC} \) + \(\widehat{ACB}\) = 90o ( 2 góc nhọn phụ nhau )

35o + \(\widehat{ACB}\) = 90o

⇒ \(\widehat{ACB}\) = 55o

23 tháng 12 2020

b . Xét ΔBEA và ΔBED, ta có :

\(\left\{{}\begin{matrix}BA=BD\left(gt\right)\\\widehat{ABE}=\widehat{DBE}\\BE-BE\end{matrix}\right.\)

⇒ ΔBEA = ΔBED ( cạnh chung )

thêm vào chỗ góc ABE = góc DBE là  ( BE là tia pg của góc ABC ) và BE=BE ( cạnh chung ) hộ mình nhá :3

2 tháng 10 2017

đổi hình rùi nè đẹp hơn trước kho mấy anh

6 tháng 6 2017

A B C D E

AE//BD => ^BAE=^ABD (So le trong). BD là phân giác ^ABC =>^ABD=^DBC => ^BAE=^DBC

Mà ^DBC=^BEA (Đồng vị) => ^BAE=^BEA (đpcm)

6 tháng 6 2017

tA có: góc BAE=góc ABD(2 góc so le trong)                                                                                                                                                      góc BEA=góc DBC(đồng vị)                                                                                                                                                                               gocABD= góc DBC (BD là tia phân giác của góc ABC)                                                                                                                                     => góc BEA= góc BAE

13 tháng 6 2018

a) Ta thấy ngay ΔABE = ΔACD  (Hai cạnh góc vuông)
b) Do ΔABE = ΔACD⇒^ABE =^ACD( ^ là góc nhé )
mà  ^ABE= ^MAC  (Cùng phụ với góc BEA)
⇒^MCA =^MAC  hay tam giác MAC cân tại M.
c) Xét tam giác vuông ADC: ^MCA =^MAC ⇒MDA=MAD =>MD=MA
Vậy thì DM = MA = MC hay M là trung điểm DC.
Xét tam giácAIC có M là trung điểm DC, MK // DI nên MK là đường trung bình tam giác DIC.
Suy ra K là trung điểm IC.
d) Xét tam giác DIC có IM và DK là hai trung tuyến nên G là trọng tâm tam giác.
Gọi N là giao điểm của CG với DE thì DN = NI.

ÁP dụng định lý TAlet

MF/DN=CF/CN=FK/NI

Mà DN=NI =>MF+FK

13 tháng 6 2018

Banj Tự vẽ hình nhé

27 tháng 2 2018

bạn vẽ hình đi

b: Xét tứ giác AEDF có 

AE//DF

AF//DE

Do đó: AEDF là hình bình hành

mà AD là phân giác

nên AEDF là hình thoi