9 . Cho a2 + b2 + c2 = ab+ bc +ca . CMR : a = b = c
MÌnh cần ngay nhé, cảm ơn mọi người trước.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài sai, phản ví dụ: \(a=b=0,c=1\)
BĐT này chỉ đúng khi a;b;c là độ dài 3 cạnh của 1 tam giác
=>2a^2+2b^2+2c^2-2ab-2bc-2ac>=0
=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)
Xét hiệu a^2+b^2+c^2-ab-ac-bc=1/2.2(a^2+b^2+c^2-ab-ac-bc)
=1/2(2a^2+2b^2+2c^2-2ab-2ac-2bc)
=1/2[(a^2-2ab+b^2)+(a^2-2ac+c^2)+(b^2-2bc+c^2)]
=1/2.[(a-b)^2+(a-c)^2+(b-c)^2]
vì (a-b)^2+(a-c)^2+(b-c)^2>=0
nên 1/2.[(a-b)^2+(a-c)^2+(b-c)^2]>=0
hay a^2+b^2+c^2-ab-ac-bc >=0<=> a^2+b^2+c^2>=ab+ac+bc
\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow ab+bc+ca=0\)
\(\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Ta có:
\(\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=\dfrac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=\dfrac{3a^2b^2c^2}{a^2b^2c^2}=3\)
Lời giải:
Tìm min:
Theo BĐT AM-GM thì: $P=a^2+b^2+c^2\geq ab+bc+ac$ hay $P\geq 9$
Vậy $P_{\min}=9$. Giá trị này đạt tại $a=b=c=\sqrt{3}$
-----------
Tìm max:
$P=a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ac)=(a+b+c)^2-18$
Vì $a,b,c\geq 1$ nên:
$(a-1)(b-1)\geq 0\Leftrightarrow ab+1\geq a+b$
Hoàn toàn tương tự: $bc+1\geq b+c; ac+1\geq a+c$
Cộng lại: $2(a+b+c)\leq ab+bc+ac+3=12$
$\Rightarrow a+b+c\leq 6$
$\Rightarrow P=(a+b+c)^2-18\leq 6^2-18=18$
Vậy $P_{\max}=18$. Giá trị này đạt tại $(a,b,c)=(1,1,4)$ và hoán vị
Tham khảo tại link sau : http://olm.vn/hoi-dap/question/721476.html
a2+b2+c2=ab+bc+ac
2a2+2b2+2c2=2ab+2bc+2ac
2a^2+2b^2+2c^2-2ab-2bc-2ac=0
(a-b)2+(a-c)2+(b-c)2=0
=> a=b=c
k co mình cái