Tính \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{10^2}\)
Các bạn giải họ mình với! Nhớ ghi rõ cách làm hộ mình nghen. Cảm ơn nhiếu!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B= 1/4+(1/5+1/6+...+1/9)+(1/10+1/11+...+1/19)
Vì 1/5+1/6+...+1/9 > 1/9+1/9+...+1/9 nên 1/5+1/6+...+1/9 > 5/9 >1/2
Vì 1/10+1/11+...+1/19 > 1/19+1/19+...+1/19 nên 1/10+1/11+...+1/19 > 10/19 >1/2
Suy ra: B > 1/4+1/2+1/2 > 1
a) \(\frac{125^5}{5^{15}}=\frac{\left(5^3\right)^5}{5^{15}}=\frac{5^{15}}{5^{15}}=1\)
Mk không rảnh cho lắm !! nên chỉ làm câu a thui mấy câu khác để suy nghĩ đã
T nha
b) \(\left(\frac{2}{3}^{21}\right):\left(\frac{4}{9}^{10}\right)=\left(\frac{2}{3}^{21}\right):\left(\frac{2}{3}^2\right)^{10}=\left(\frac{2}{3}^{21}\right):\left(\frac{2}{3}^{20}\right)=\frac{2}{3}\)
Đặt phân thức trên là D
=> D=(1+1+1+1+...+1+2013/2+2012/3+...+2/2013+1/2014)/(1/2+1/3+1/4+...+1/2014)
=> D=(1+2013/2+1+2012/3+1+2011/4+...+1+2/2013+1+1/2014+1)/(1/2+1/3+1/4+1/5+...+1/2014)
=> D=(2015/2+2015/3+2015/4+...+2015/2013+2015/2014+1)/(1/2+1/3+1/4+...+1/2014)
=> D=[2015*(1/2+1/3+1/4+1/5+....+1/2014)]/(1/2+1/3+1/4+1/5+...+1/2014)
=> D=2015
a)= \(\frac{2}{3}+\frac{3}{2}.\frac{6}{5}-\frac{1}{5}\)
=\(\frac{13}{6}.1\)=\(\frac{13}{6}\)
b)= \(\frac{1}{9}.\frac{27}{2}-\frac{1}{5}:\frac{5}{6}\)
=\(\frac{3}{2}-\frac{6}{25}=\frac{63}{50}\)
A=(1-1/1)+(1-1/4)+(1-1/9)+(1/16)+..........+(1-1/100)
=>1-99/100
33/2500