K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2020

a) x = [((n + 1)(n + 4)].[(n + 2)(n + 3)] + 1

= (n2 + 5n + 4)(n2 + 5n + 6) + 1 

= (n2 + 5n + 5 - 1)(n2 + 5n + 5 + 1) + 1

= (n2 + 5n + 5)2 - 12 + 1 = (n2 + 5n + 5)2 (đpcm)

b) y = [n(n + 9)].[(n + 3)(n + 6)] + 81 

= (n2 + 9n).(n2 + 9n + 18) + 81

= (n2 + 9n + 9 - 9)(n2 + 9n + 9 + 9) + 81

= (n2 + 9n + 9)2 - 92 + 81 = (n2 + 9n + 9)2 (đpcm)

22 tháng 8 2020

a) \(x=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1\)    

\(=\left(n+1\right)\left(n+4\right)\left(n+2\right)\left(n+3\right)+1\)  

\(=\left(n^2+5n+4\right)\left(n^2+5n+6\right)+1\)   ( 1 ) 

Đặt \(t=n^2+5n\)     

\(\left(1\right)\Leftrightarrow=\left(t+4\right)\left(t+6\right)+1\)   

\(=t^2+10+24+1\)    

\(=t^2+10t+25\)          

\(=\left(t+5\right)^2\)      

Vậy x là số chính phương 

b)  \(y=n\left(n+3\right)\left(n+6\right)\left(n+9\right)+81\)          

\(=n\left(n+9\right)\left(n+3\right)\left(n+6\right)+81\)    

\(=\left(n^2+9n\right)\left(n^2+9n+18\right)+81\)    ( 1 ) 

Đặt \(a=n^2+9n\)   

\(\Leftrightarrow\left(1\right)=a\left(a+18\right)+81\)       

\(=a^2+18a+81\)         

\(=\left(a+9\right)^2\)               

Vậy y là số chính phương 

17 tháng 1 2022

trò gì mà vừa đi vừa chjy

21 tháng 1 2022

NGÁO À

1 tháng 10 2015

a)  (Em xem lại , câu này em hỏi rồi nhé)

A = 1.1 + 2.(1 + 1) + 3. (1 + 2) + ...+ 10.(1 + 9)

A = 1 + 2 + 1.2 + 3 + 2.3 + ...+ 10 + 9.10

A = (1 + 2+ 3 + ...+ 10) + (1.2 + 2.3 + ...+ 9.10)

Tính 1 + 2 + 3 + ...+ 10 = (1 + 10).10 : 2 = 55

B = 1.2 + 2.3 + ...+ 9.10 

3.B = 1.2.3 + 2.3.(4 - 1) + ...+ 9.10.(11- 8) = 1.2.3 + 2.3.4 - 1.2.3 + ...- 8.9.10 + 9.10.11

3.B = (1.2.3 + 2.3.4 + ...+ 9.10.11) - (1.2.3 + ...+ 8.9.10) = 9.10.11 => B = 330

Vây A = 55 + 330 = 385

b) Số số hàng: (2n - 1 - 1): 2 + 1 = n

M = (1 + 2n - 1). n : 2 = n=> M là số chính phương

23 tháng 6 2019

5. Ta có: a(a - 1) - (a + 3)(a + 2) = a2 - a - a2 - 2a - 3a - 6

           = -6a - 6 = -6(a + 1) \(⋮\)6

<=> -6(a + 1) \(⋮\)\(\forall\)\(\in\)Z

<=> a(a - 1) - (a + 3)(a + 2) \(⋮\) 6 \(\forall\)\(\in\)Z

6. Thay x = 99 vào biểu thức A, ta có:

A = 995 - 100.994 + 100. 993 - 100.992 + 100 . 99 - 9

A = 995 - (99 + 1).994 + (99 + 1).993 - (99 + 1).992 + (99 + 1).99 - 9

A = 995 - 995 - 994 + 994 + 993 - 993 - 992 + 992 + 99 - 9

A = 99 - 9 

A = 90

Vậy ....

Bài 3:

(3x-1)(2x+7)-(x+1)(6x-5)=16.

=> 6x2+21x-2x-7-(6x2-5x+6x-5)=16

=>  6x2+21x-2x-7-6x2+5x-6x+5=16

=> 18x-2=16

=> 18x=16+2

=> 18x=18

=> x=1

Bài 4:

ta có : \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-\left(n^2+2n-3n-6\right)\)

\(=n^2+5n-n^2-2n+3n+6\)

\(=6n+6=6\left(n+1\right)⋮6\)

⇔6(n+1) chia hết cho 6 với mọi n là số nguyên

⇔n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên

vậy n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên (đpcm)

Bài 6:

\(A=x^5-100x^4+100x^3-100x^2+100x-9\)

\(\Rightarrow A=x^5-\left(99+1\right)x^4+\left(99+1\right)x^3-\left(99+1\right)x^2+\left(99+1\right)x-9\)

\(\Rightarrow A=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)

\(\Rightarrow A=\left(x^5-99x^4\right)-\left(x^4-99x^3\right)+\left(x^3-99x^2\right)-\left(x^2-99x\right)+x-9\)

\(\Rightarrow A=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)-x\left(x-99\right)+x-9\)

\(\Rightarrow A=\left(x-99\right)\left(x^4-x^3+x^2-x\right)+x-9\)

Thay 99=x, ta được:

\(A=\left(x-x\right)\left(x^4-x^3+x^2-x\right)+x-9\)

\(\Rightarrow A=x-9\)

Thay x=99 ta được:

\(A=99-9=90\)