$\begin{cases} x+y=52\\4x+5y=233\ \end{cases}$
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
anh làm mẫu 2 câu còn lại em tự làm cho quen nhé, mấy cái hpt như này thì em dùng phương pháp cộng đại số là tối ưu nhất
a, \(\hept{\begin{cases}2x+y=5\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=6\\y=x-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
b, \(\hept{\begin{cases}2x-3y=3\\2x+5y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}8y=2\\x=\frac{3+3y}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{1}{4}\\x=\frac{15}{8}\end{cases}}}\)
đk: \(x\ge y>0\). nhân tương ứng với vế hai pt của hệ ta được 2=(x+y)-(x-y)=>y=1. Với y=1 thay vào pt (2) ta có:
\(\sqrt{\frac{5}{x}}=\sqrt{x+1}+\sqrt{x-1}\)
Xét pt trên ta thấy:
\(x=\frac{5}{4}\)là 1 nghiệm của pt
Nếu \(x>\frac{5}{4}\Rightarrow VT< 2< VP\)
Nếu \(x< \frac{5}{4}\Rightarrow VT>2>VP\)
do đó x=5/4 là nghiệm duy nhất của pt
Vậy hệ pt có nghiệm duy nhất là (x;y)=(5/4;1)
\(c,\left\{{}\begin{matrix}3x+5y=1\\2x-y=-8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x+10y=2\\6x-3y=-24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}13y=26\\6x-3y=-24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\6x-3.2=-24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-3\end{matrix}\right.\)
\(d,\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\left(I\right)\)
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\left(x\ne0\right)\\\dfrac{1}{y}=b\left(y\ne0\right)\end{matrix}\right.\)
\(\left(I\right)\Rightarrow\left\{{}\begin{matrix}a-b=1\\3a+4b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a-3b=3\\3a+4b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-7b=-2\\3a+4b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{2}{7}\\3a+4.\dfrac{2}{7}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{2}{7}\\a=\dfrac{9}{7}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{2}{7}\Leftrightarrow x=\dfrac{7}{2}\\\dfrac{1}{y}=\dfrac{9}{7}\Leftrightarrow y=\dfrac{7}{9}\end{matrix}\right.\)
c. \(\left\{{}\begin{matrix}3x+5y=1\\2x-y=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+10y=2\\6x-3y=-24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13y=26\\2x-y=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-3\end{matrix}\right.\)
d. \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\left(x\ne0\right)\\\dfrac{1}{y}=b\left(y\ne0\right)\end{matrix}\right.\)
hpt \(\Leftrightarrow\left\{{}\begin{matrix}a-b=1\\3a+4b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a-3b=3\\3a+4b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7b=-2\\a-b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{2}{7}\\a=\dfrac{9}{7}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{9}{7}\\\dfrac{1}{y}=\dfrac{2}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{9}\\y=\dfrac{7}{2}\end{matrix}\right.\)
Nghiệm là:
\(\hept{\begin{cases}x=6\\y=2\end{cases}}\)thảo mãn
P/s: Mk ko chắc đâu nhé
Rút x ở phương trình thứ hai, rồi thay vào phương trình thứ nhất để tìm y.
Từ phương trình thứ hai ta có:
\(x=-3+4y\) ( * )
Thay x vào phương trình thứ nhất ta có:
\(4\left(-3+4y\right)-5y=-12\)
Giải ra ta được
\(y=0\)
Thay y vào (*) ta tìm x:
\(x=-3+4.0\)
\(x=-3\)
Vậy nghiệm của hệ phương trình là:
\(\hept{\begin{cases}x=-3\\y=0\end{cases}}\)
\(a,\)\(\hept{\begin{cases}3x+y=3\\2x-y=7\end{cases}}\)\(\Rightarrow3x+y+2x-y=3+7\)\(\Rightarrow5x=10\Rightarrow x=2\)
Mà \(3x+y=3\Rightarrow3.2+y=3\Rightarrow y=3-6=-3\)
Vậy \(\hept{\begin{cases}x=2\\y=-3\end{cases}}\)
\(b,\hept{\begin{cases}2x+5y=8\\2x-3y=0\end{cases}}\)\(\Rightarrow2x+5y-\left(2x-3y\right)=8-0\)
\(\Rightarrow2x+5y-2x+3y=8\)\(\Rightarrow8y=8\Rightarrow y=1\)
Mà \(2x+5y=8\Rightarrow2x+5=8\Rightarrow2x=\frac{8-5}{2}=\frac{3}{2}\)
Vậy \(\hept{\begin{cases}x=\frac{3}{2}\\y=1\end{cases}}\)
\(c,\hept{\begin{cases}4x+3y=6\\2x+y=4\end{cases}\Rightarrow\hept{\begin{cases}4x+3y=6\\4x+2y=8\end{cases}}}\)
\(\Rightarrow4x+3y-\left(4x+2y\right)=6-8\)
\(\Rightarrow4x+3y-4x-2y=-2\)
\(\Rightarrow y=-2\)
Mà \(4x+3y=6\Rightarrow4x-6=6\Rightarrow4x=12\Leftrightarrow x=3\)
Vậy \(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)
Làm tương tự nha cậu
\(\left\{{}\begin{matrix}x+y=52\\4x+5y=233\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x+4y=208\\4x+5y=233\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x-5y=208-233\\4x+5y=233\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-y=25\\4x=233-5y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=25\\4x=233-5.25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=25\\4x=108\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=25\\x=27\end{matrix}\right.\)