so sánh :
10^200 và 99^100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(9^{200}=9^{2.100}=\left(9^2\right)^{100}=81^{100}\)
vì \(81< 99\Rightarrow81^{100}< 99^{100}\)
\(\Rightarrow9^{200}< 99^{100}\)
\(99^{100}=99^{100}\)
\(33^{200}=\left(33^2\right)^{100}=1089^{100}\)
vi \(1089>99\) nen \(1089^{100}>99^{100}\)
vay \(99^{100}< 33^{200}\)
ta có : 9^200=(9^2)^100=81^100.
vì 81^100<99^100 nên 9^200<99^100.
\(9^{200}=\left(9^2\right)^{100}=81^{100}< 99^{100}\)
Vậy \(9^{200}< 99^{100}\)
ta có 9999= 99 *101.
do đó 9999^10 = 99 ^10 * 101^10
còn 99^20 = 99^10 * 99^10
vì 99^10 < 101^10 nên 99^10 * 99^10 < 99 ^10 * 101^10 .
vậy 99^20 < 9999^10.
ta co:9999^10 = 99^10 x 99^10 x 2^10 = 99^200
suy ra :9999^10=99^200
vay . . .
TA CÓ :
\(99^{20}=99^{2\times10}=9801\)
\(\Rightarrow9801^{10}< 9999^{10}\) nên \(99^{20}< 9999^{10}\)
hok tốt~~
`A=3/4+8/9+.............+9999/10000`
`=1-1/4+1-1/9+,,,,,,,,,,+1-1/10000`
`=99-(1/4+1/9+.........+1/10000)<99-0=99`
`=>A<99`
a/ Ta có
\(200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)\)
\(=1+2\left(1-\frac{1}{3}\right)+2\left(1-\frac{1}{4}\right)+...+2\left(1-\frac{1}{100}\right)\)
\(=1+2\left(\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\right)\)
\(=2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\)
Thế lại bài toán ta được:
\(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}\)
\(=\frac{2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}=2\)
b/ Ta có:
A - B\(=\frac{-21}{10^{2016}}+\frac{12}{10^{2016}}+\frac{21}{10^{2017}}-\frac{12}{10^{2017}}\)
\(=\frac{9}{10^{2017}}-\frac{9}{10^{2016}}< 0\)
Vậy A < B
\(2^{50}=\left(2^5\right)^{10}=32^{10}\)
\(5^{20}=\left(5^2\right)^{10}=25^{10}\)
Suy ra: 250 > 520
b)
\(9^{200}=\left(9^2\right)^{100}=81^{100}\)
Suy ra: 99100 > 81100
99^100 lớn hơn
10200 = (112)100 = 121100
Vì 121 > 99 nên 121100 > 99100
=> 10200 > 99100