K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng với ΔHEC

=>HF/HE=HB/HC

=>HF*HC=HB*HE

2: Xét ΔAFH vuông tại F và ΔADB vuông tại D có

góc FAH chung

=>ΔAFH đồng dạng với ΔADB

=>AF/AD=AH/AB

=>AF*AB=AD*AH

Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF=AH*AD

5 tháng 11 2017

a: Xét (O) có

ΔBFC nội tiếp

BC là đường kính

Do đó: ΔBFC vuông tại F

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

Xét ΔABC có

BE,CF là đường cao

BE cắt CF tại H

Do đó: AH vuông góc với BC tại D

b: Xét ΔAEH vuông tại E và ΔADC vuông tại D có

góc EAH chung

Do đó: ΔAEH đồnbg dạng với ΔADC

Suy ra: AE/AD=AH/AC
hay \(AE\cdot AC=AH\cdot AD\)

4 tháng 1 2019

a, Ta có: ∆AEF ~ ∆MCE (c.g.c)

=>  A F E ^ = A C B ^

b, Ta có: ∆MFB ~ ∆MCE (g.g)

=> ME.MF = MB.MC

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiêp

=>góc AFE=góc ACB

mà góc FAE chung

nên ΔAFE đồng dạng với ΔACB

b: Xét ΔDAB vuông tại D và ΔDCH vuông tại D có

góc DAB=góc DCH

=>ΔDAB đồng dạng vơi ΔDCH

=>DA/DC=DB/DH

=>DA*DH=DB*DC

c: Xét ΔHDC vuông tại D và ΔHFA vuông tại F có

góc DHC=góc FHA

=>ΔHDC đồng dạng vơi ΔHFA

=>HD/HF=HC/HA

=>HF*HC=HD*HA

Xet ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng với ΔHEC
=>HF/HE=HB/HC

=>HF*HC=HB*HE=HD*HA

11 tháng 10 2023

3:

Xét ΔCEH vuông tại E và ΔCFA vuông tại F có

\(\widehat{FCA}\) chung

Do đó: ΔCEH đồng dạng với ΔCFA

=>CE/CF=CH/CA

=>\(CE\cdot CA=CH\cdot CF\)

Xét ΔCDH vuông tại D và ΔCFB vuông tại F có

\(\widehat{FCB}\) chung

Do đó: ΔCDH đồng dạng với ΔCFB

=>CD/CF=CH/CB

=>CD*CB=CH*CF

=>CD*CB=CH*CF=CE*CA

Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

\(\widehat{EBC}\) chung

Do đó: ΔBDH đồng dạng với ΔBEC

=>BD/BE=BH/BC

=>\(BD\cdot BC=BH\cdot BE\)

Xét ΔBDA vuông tại D và ΔBFC vuông tại F có

góc DBA chung

Do đó: ΔBDA đồng dạng với ΔBFC

=>BD/BF=BA/BC

=>BD*BC=BF*BA

=>BD*BC=BF*BA=BH*BE

\(AH\cdot AD+BH\cdot BE=AF\cdot AB+BF\cdot BA=BA^2\)

\(AH\cdot AD+CH\cdot CF=AE\cdot AC+CE\cdot CA=AC^2\)

\(BH\cdot BE+CH\cdot CF=BD\cdot BC+CD\cdot CB=BC^2\)

Do đó: \(2\left(AH\cdot AD+BH\cdot BE+CH\cdot CF\right)=BA^2+AC^2+BC^2\)

=>\(AH\cdot AD+BH\cdot BE+CH\cdot CF=\dfrac{AB^2+AC^2+BC^2}{2}\)

a: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng với ΔHEC

=>HF/HE=HB/HC

=>HF*HC=HE*HB

b: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc BFE+góc BCE=180 độ

mà góc AFE+góc BFE=180 độ

nên góc AFE=góc ACB

c: Xét ΔKFB và ΔKCE có

góc KFB=góc KCE(=góc AFE)

góc K chung

=>ΔKFB đồng dạng với ΔKCE

=>KF/KC=KB/KE

=>KF*KE=KB*KC