chứng minh \(9^n\)- 1 chia het cho 8 (n\(\in\)N*)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Với n=1 \(\Rightarrow9^1-1=8\) chia hết cho 8
+ Giả sử với n=k thì \(9^k-1\) cũng chia hết cho 8
+ Ta phải chức minh với n=k+1 thì \(9^n-1\) cũng chia hết cho 8
\(9^n-1=9^{k+1}-1=9.9^k-1=9.9^k-9=8=9\left(9^k-1\right)+8\)
Ta có \(9^k-1\) chia hết cho 8 \(\Rightarrow9\left(9^k-1\right)\)chia hết cho 8; 8 chia hết cho 8
=> \(9^{k+1}-1\) chia hết cho 8
Kết luận \(9^n-1\) chia hết cho 8 với \(n\in N\)
ta có 10^n tận cùng bằng 0 chia cho 9 dư 1 thế nên 10^n+8 chia het cho 9
Ta thấy: 10 đồng dư với 1(mod 9)
=>10n đồng dư với 1n(mod 9)
=>10n đồng dư với 1(mod 9)
=>10n+8 đồng dư với 1+8(mod 9)
=>10n+8 đồng dư với 9(mod 9)
=>10n+8 đồng dư với 0(mod 9)
=>10n+8 chia hết cho 9
=>ĐPCM
a.n + 7 chia hết cho n+2
=> n + 2 + 5 chia hết cho n+2
=> 5 chia hết cho n+2
=> n + 2 thuộc tập hợp các số : 5;-5;1;-1
=> n thuộc tập hợp các số : 3;-7;-1;-3
b.9-n chia hết cho n-3
=> 6 - n - 3 chia hết cho n-3
=> 6 chia hết cho n-3
=> n -3 thuộc tập hợp các số : 1;-1;6;-6
=> n thuộc tập hợp các sô : 4;2;9;-3
Giải hết ra dài lắm
k mk nha
a) Vì 1494 và 1495 là số tự nhiên liên tiếp nên chia hết cho 2 , nhân với 1496 là số chẵn nên 1494 x 1495 x 1496 chia hết cho 2 => 1494 x 1495 x 1496 chia hết cho 2 x 90 => chúng chia hết cho 180.
b) Vì 1494 x 1495 x 1496 là 3 số tự nhiên liên tiếp nên chắc chắn có 1 số chia hết cho 3 => 1494 x 1495 x 1496 chia hết cho 3 => 1494 x 1495 x 1496 chia hết cho 3 x 165 => 1494 x 1495 x 1496 chia hết cho 495
Mấy câu dưới ko bik
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv//////////////////////?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????