K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2019

Easy!

\(A=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)

\(=\sqrt{\frac{3}{2}}\left[\sqrt{\left(a+b\right).\frac{2}{3}}+\sqrt{\left(b+c\right).\frac{2}{3}}+\sqrt{\left(c+a\right).\frac{2}{3}}\right]\) (*)

Áp dụng BĐT Cô si ngược,ta có: 

(*) \(\le\sqrt{\frac{3}{2}}\left[\frac{a+b+\frac{2}{3}}{2}+\frac{b+c+\frac{2}{3}}{2}+\frac{c+a+\frac{2}{3}}{2}\right]\)

\(=\sqrt{\frac{3}{2}}\left(a+b+c+1\right)=\sqrt{\frac{3}{2}}.2=\sqrt{6}^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a+b=b+c=c+a=\frac{2}{3}\\a+b+c=1\end{cases}\Leftrightarrow}a=b=c=\frac{1}{3}\)

16 tháng 8 2019

Bạn tham khảo câu này nhé: 

https://olm.vn/hoi-dap/detail/210792556876.html

17 tháng 8 2019

Áp dụng BĐT Bu-nhi-a-cốp-ski, ta có :

\(\left(1.\sqrt{a+b}+1.\sqrt{b+c}+1.\sqrt{c+a}\right)^2\le\left(1^2+1^2+1^2\right)\left(2\left(a+b+c\right)\right)=6\)

\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)

Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)

13 tháng 8 2016

Đề đúng là: Cho  \(a,b,c>0\) thỏa mãn \(\sqrt{a}+\sqrt{b}-\sqrt{c}=\sqrt{a+b-c}\)

Chứng minh \(\sqrt[2006]{a}+\sqrt[2006]{b}-\sqrt[2006]{c}=\sqrt[2006]{a+b-c}\)

Giải: Từ \(\sqrt{a}+\sqrt{b}-\sqrt{c}=\sqrt{a+b-c}\)\(\Rightarrow\)\(\left(\sqrt{a}+\sqrt{b}-\sqrt{c}\right)^2=\left(\sqrt{a+b-c}\right)^2\)

\(\Leftrightarrow\)\(a+b+c+2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}=a+b-c\)

\(\Leftrightarrow\)\(2c+2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}=0\)

\(\Leftrightarrow\)\(\left(c-\sqrt{ca}\right)+\left(\sqrt{ab}-\sqrt{bc}\right)=0\)

\(\Leftrightarrow\)\(\sqrt{c}\left(\sqrt{c}-\sqrt{a}\right)-\sqrt{b}\left(\sqrt{c}-\sqrt{a}\right)=0\)

\(\Leftrightarrow\)\(\left(\sqrt{c}-\sqrt{a}\right)\left(\sqrt{c}-\sqrt{b}\right)=0\)

\(\Rightarrow\)\(\sqrt{c}-\sqrt{a}=0\) hoặc \(\sqrt{c}-\sqrt{b}=0\)\(\Rightarrow\)\(\sqrt{c}=\sqrt{a}\) hoặc \(\sqrt{c}=\sqrt{b}\)

- Nếu \(\sqrt{c}=\sqrt{a}\) thì \(\sqrt[2006]{a}+\sqrt[2006]{b}-\sqrt[2006]{c}=\sqrt[2006]{b}=\sqrt[2006]{a+b-c}\)

- Nếu \(\sqrt{c}=\sqrt{b}\) thì \(\sqrt[2006]{a}+\sqrt[2006]{b}-\sqrt[2006]{c}=\sqrt[2006]{a}=\sqrt[2006]{a+b-c}\)

12 tháng 8 2016

chịu .chưa học ai cũng chưa học giống mình thì k cho mình .rồi mình k lại cho.thề đấy

7 tháng 1 2019

Chậc -.- ai ngờ bài này lại dễ vậy .... Cứ chứng minh đủ kiểu hóa ra dùng Cô-si là xong .... nghĩ xa quá XD

Áp dụng bđt Cô-si cho 3 số dương ta được

\(\sqrt{a^6+b^6+1}\ge\sqrt{3\sqrt[3]{a^6.b^6.1}}=ab\sqrt{3}\)

C/m tương tự \(\sqrt{b^6+c^6+1}\ge bc\sqrt{3}\)

                     \(\sqrt{c^6+a^6+1}\ge ac\sqrt{3}\)

Cộng 3 bđt trên lại ta được

\(VT\ge\left(ab+bc+ca\right)\sqrt{3}=3\sqrt{3}\)

Dấu "=" xảy ra <=> a = b= c = 1

Vậy ..........

15 tháng 9 2018

Mọi người ơi chỉ =6 thôi nha k phải 66 đâu

15 tháng 9 2018

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

\(\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{6}{2}=3\)(BĐT \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

Dấu "=" xảy ra khi \(a=b=c=2\)

20 tháng 8 2015

biến dổi tương đương

cộng trừ VT\(\sqrt{a},\sqrt{b},\sqrt{c}\)

Quy đống lên ta có

\(\left(a+b+c\right)\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)-\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)bạn quy đồng lên rùi lm tiep