Cho tam giác abc vuông tại A có BD là phân giác, kẻ DE vuông góc với BC(E thuộc BC). Gọi F là giao điểm của AB và ĐE. Chứng minh rằng a) tam giác ABD = tam giác EBD b) BĐ là đường trung trực của AE c) BD vuông góc FC d) AE + FC < 2AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ABD và tam giác EBD có:
góc BAD=BED(tam giác abc vuông, DE vuông góc BC)
BD=BD(chung)
góc ABD=EBD (BD là phân giác)
=)tam giác ABD=tam giác EBD(cạnh huyền-góc nhọn)
vậy.....
b,gọi giao của AE và BD là O
ta có tam giác ABD=tam giác EBD
=)AB=BE ( 2 cạnh tưng ứng)
xét tam giác ABO và tam giác EBO có:
AB=BE (cmt)
góc ABO=EBO ( BD là phân giác)
BO=BO ( chung)
=)tam giác ABO=EBO (c-g-c)
=)AO=OE ( 2 cạnh tương ứng)(1)
AOB=EOB( 2 góc tương ứng)
mà AOB+EOB=180 độ ( 2 góc kề bù)
=)AOB=EOB=180:2=90độ
=)BO vuông góc AE (2)
từ(1) và (2)=)BO là trung trực AE
vậy....
c, Ta có tam giác DEC vuông tại E
=)DC>DE ( trong tam giác vuông cạnh huyền là cạnh lớn nhất)
mà DE=DA ( tam giác ABD= tam giác EBD)
=)DC>DA
hay DA<DC
vậy....
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: Ta có: ΔBAD=ΔBED
nên BA=BE và DA=DE
Ta có: BA=BE
nên B nằm trên đường trung trực của AE\(\left(1\right)\)
Ta có: DA=DE
nên D nằm trên đường trung trực của AE\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra BD là đường trung trực của AE
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
nên BA=BE và DA=DE
Ta có: BA=BE
nên B nằm trên đường trung trực của AE\(\left(1\right)\)
Ta có: DA=DE
nên D nằm trên đường trung trực của AE\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra BD là đường trung trực của AE
c: Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
AF=EC
Do đó: ΔADF=ΔEDC
Suy ra: DF=DC
hay ΔDFC cân tại D
a)
và có:
BA = BE (gt)
(BD là tia phân giác góc B)
BD là cạnh chung
(c.g.c)
(hai góc tương ứng)
mà
DE BE
b) và có:
BA = BE (gt)
a: XétΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
Suy ra: BA=BE và DA=DE
hay BD là đường trung trực của AE
b: Ta có: AD=DE
mà DE<DC
nên AD<CD
a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: ΔBAE cân tại B
mà BM là phân giác
nên BM vuông góc AE tại M và M là trung điểm của AE
a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
b: XétΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
c: ta có: ΔABD=ΔEBD
nên BA=BE và DA=DE
=>BD là đường trung trực của AE
hay BD\(\perp\)AE
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD là trung trực của AE
c: Xét ΔBFC có
FE,CA là đường cao
FE cắt CA tại D
=>D là trực tâm
=>BD vuông góc FC