Tìm GTLN của biểu thức : A= -x^2+4x
làm ơn, giúp mk ik
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\frac{7x-8}{2x-3}=\frac{1}{2}.\frac{14x-16}{2x-3}=\frac{1}{2}.\frac{14x-21+5}{2x-3}=\frac{1}{2}.\frac{7\left(2x-3\right)+5}{2x-3}\)\(=\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\)
Để A đạt GTLN thì \(\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\) lớn nhất
\(\Rightarrow7+\frac{5}{2x-3}\) lớn nhất
\(\Rightarrow\frac{5}{2x-3}\) lớn nhất
\(\Rightarrow2x-3\) nhỏ nhất hay x nhỏ nhất và x > 0
Vì \(x\inℤ\) nên \(2x-3\inƯ\left(5\right)=\left\{1;5\right\}\)
\(\Rightarrow2x\in\left\{4;8\right\}\)
\(\Rightarrow x\in\left\{2;4\right\}\)
Mà x nhỏ nhất và x > 0 nên x = 2
Thay x = 2 vào A ta được: \(A=\frac{1}{2}.\left(7+\frac{5}{2.2-3}\right)=\frac{1}{2}.12=6\)
Vậy MaxA = 6 tại x = 2.
\(A=\dfrac{6x^2+21x+22}{x^2+4x+4}\)
\(=\dfrac{6\left(x^2+4x+4\right)-3x-2}{x^2+4x+4}\)
\(=6+\dfrac{-3x-2}{\left(x+2\right)^2}\)
\(=6+\dfrac{-3\left(x+2\right)+4}{\left(x+2\right)^2}\)
\(=6-\dfrac{3}{x+2}+\dfrac{4}{\left(x+2\right)^2}\)
-Đặt \(a=\dfrac{1}{x+2}\) thì:
\(A=6-3a+4a^2=\left(2a\right)^2-2.2a.\dfrac{3}{4}+\dfrac{9}{16}+\dfrac{87}{16}=\left(2a-\dfrac{3}{4}\right)^2+\dfrac{87}{16}\ge\dfrac{87}{16}\)
\(A_{min}=\dfrac{87}{16}\)\(\Leftrightarrow\left(2a-\dfrac{3}{4}\right)^2=0\Leftrightarrow2a-\dfrac{3}{4}=0\Leftrightarrow2a=\dfrac{3}{4}\)
\(\Leftrightarrow2.\dfrac{1}{x+2}=\dfrac{3}{4}\Leftrightarrow\dfrac{1}{x+2}=\dfrac{3}{8}\Leftrightarrow x+2=\dfrac{8}{3}\Leftrightarrow x=\dfrac{2}{3}\)
\(A=3-4x-x^2=-\left(x^2+4x+4\right)+7=7-\left(x+2\right)^2\ge7\forall x\)
Dấu bằng xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy A max là 7 chỉ khi x=-2
b) \(7-x^2-y^2-2\left(x+y\right)\)
\(=7-x^2-y^2-2x-2y\)
\(=-x^2-2x-1-y^2-2y-1+9\)
\(=-\left(x+1\right)^2-\left(y+1\right)^2+9\le9\)
Max = 9 \(\Leftrightarrow\hept{\begin{cases}x+1=0\\y+1=0\end{cases}\Leftrightarrow}x=y=-1\)
Vậy ...................
\(6,\\ a,\\ 1,A=x^2+3x+7=\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)
\(2,B=\left(x-2\right)\left(x-5\right)\left(x^2-7x+10\right)=\left(x-2\right)^2\left(x-5\right)^2\ge0\)
Dấu \("="\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
\(b,\\ 1,A=11-10x-x^2=-\left(x+5\right)^2+36\le36\)
Dấu \("="\Leftrightarrow x=-5\)
-(4x\(^2\)+4x-9)= -( 4x\(^2\)+4x+1-1-9) = -((2x+1)\(^2\)-10)= -(2x+1)\(^2\)+10 \(\le\)10
\(A=-x^2+4x=-\left(x^2-4x+4\right)+4=-\left(x-2\right)^2+4\)
Vì \(-\left(x-2\right)^2\le0\Leftrightarrow-\left(x-2\right)^2+4\le4\Leftrightarrow A\le4\)
Dấu "=" xảy ra khi \(x-2=0\Leftrightarrow x=2\)
Vậy GTLN của A là 4 khi \(x=2\)
\(A=-x^2+4x\)
\(\Rightarrow-A=x^2-4x\)
\(\Rightarrow-A=x^2-2.x.2+2^2-2^2\)
\(\Rightarrow-A=\left(x-2\right)^2-4\)
\(\Rightarrow A=-\left(x-2\right)^2+4\)
Nhận xét: \(-\left(x-2\right)^2\le0\forall x\Rightarrow-\left(x-2\right)^2+4\le4\forall x\)
Vậy giá trị lớn nhất của \(A=4\) khi \(x-2=0\Leftrightarrow x=2\)