Câu 3: Tìm x, biết:
a) 5x( x-1)= x-1
b) 2(x+5)- x²- 5x= 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\Leftrightarrow2x^2-10x-3x-2x^2=26\)
=>-13x=26
hay x=-2
b: \(\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\)
hay \(x\in\left\{1;\dfrac{1}{5}\right\}\)
c: \(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)
hay \(x\in\left\{-5;2\right\}\)
a) 3/35 - (3/5 + x) = 2/7
=> 3/5 + x= 3/35- 2/7
=> 3/5 +x = -1/5
=> x = -1/5 -3/5
=> x = -4/5
b) 3/7 +1/7 : x = 3/14
=> 1/7 : x= 3/14 -3/7
=> 1/7 : x = -3/14
=> x = 1/7 : -3/14
=> x = -2/3
c) (5x-1).(2x-1/3)=0
=> \(\left[{}\begin{matrix}5x-1=0\\2x-\dfrac{1}{3}=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}5x=0+1=1\\2x=0+\dfrac{1}{3}=\dfrac{1}{3}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=\dfrac{1}{3}:2=\dfrac{1}{6}\end{matrix}\right.\)
Học tốt :D
a)x=-4/5
b)x=-2/3
c)\(\left\{{}\begin{matrix}5x-1=0\\2x-\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x=1\\2x=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\x=\dfrac{1}{6}\end{matrix}\right.\)
Vậy.........
mik lười mong bn thông cảm
`a)5x(x-1)-(x+2)(5x-7)=6`
`<=>5x^2-5x-(5x^2-7x+10x-14)=6`
`<=>5x^2-5x-(5x^2+3x-14)=6`
`<=>-8x+14=6`
`<=>8x=8<=>x=1`
Vậy `x=1`
`b)(x+2)^2-(x^2-4)=0`
`<=>x^2+4x+4-x^2+4=0`
`<=>4x+8=0`
`<=>4x=-8`
`<=>x=-2`
Vậy `x=-2`
a: Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)
\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)
\(\Leftrightarrow10x=20\)
hay x=2
b: Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)
\(\Leftrightarrow x^3-1-x^3+4x=5\)
\(\Leftrightarrow4x=6\)
hay \(x=\dfrac{3}{2}\)
\(a,\Leftrightarrow\left(x+3\right)\left(x+3-x+3\right)=0\Leftrightarrow x=-3\\ b,\Leftrightarrow x=0\left(x^2+4>0\right)\)
\(a,x^2+2.x.3+3^2-\left(x^2-3^2\right)=0\)
\(x^2+6x+9-x^2+9=0\)
\(6x+18=0\)
\(6x=-18\)
\(x=-3\)
Vậy x=-3
\(b,5x^3+20x=0\)
\(5x\left(x^2+4\right)=0\)
\(Th1:5x=0=>x=0\)
\(Th2:x^2+4=0\)
\(x^2=-4\)(vô lý)
Vậy x=0
a: =>xy-x+y=0
=>x(y-1)+y-1=-1
=>(y-1)(x+1)=-1
=>(x+1;y-1) thuộc {(1;-1); (-1;1)}
=>(x,y) thuộc {(0;0); (-2;2)}
b: =>x(y+2)+y-1=0
=>x(y+2)+y+2-3=0
=>(y+2)(x+1)=3
=>(x+1;y+2) thuộc {(1;3); (3;1); (-1;-3); (-3;-1)}
=>(x,y) thuộc {(0;1); (2;-1); (-2;-5); (-4;-3)}
c:
y>=3
=>y+5>=8
=>y(x-7)+5x-35=-35
=>(x-7)(y+5)=-35
mà y+5>=8
nên (y+5;x-7) thuộc (35;-1)
=>(y;x) thuộc {(30;6)}
\(a,\Leftrightarrow4x^2-20x-4x^2+7x-3=23\\ \Leftrightarrow-13x=-26\\ \Leftrightarrow x=2\\ b,\Leftrightarrow x^2+4x+4+4x^2-12x+9=5x^2+35x\\ \Leftrightarrow-43x=-13\\ \Leftrightarrow x=\dfrac{13}{43}\)
a) \(4x\left(x-5\right)-\left(x-1\right)\left(4x-3\right)=23\)
\(\Leftrightarrow4x^2-20x-4x^2+7x-3=23\)
\(\Leftrightarrow13x=-26\Leftrightarrow x=-2\)
b) \(\left(x+2\right)^2+\left(2x-3\right)^2=5x\left(x+7\right)\)
\(\Leftrightarrow x^2+4x+4+4x^2-12x+9=5x^2+35x\)
\(\Leftrightarrow43x=13\Leftrightarrow x=\dfrac{13}{43}\)
\(1,\\ a,A=4x^2\left(-3x^2+1\right)+6x^2\left(2x^2-1\right)+x^2\\ A=-12x^4+4x^2+12x^2-6x^2+x^2=-x^2=-\left(-1\right)^2=-1\\ b,B=x^2\left(-2y^3-2y^2+1\right)-2y^2\left(x^2y+x^2\right)\\ B=-2x^2y^3-2x^2y^2+x^2-2x^2y^3-2x^2y^2\\ B=-4x^2y^3-4x^2y^2+x^2\\ B=-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^3-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^2+\left(0,5\right)^2\\ B=\dfrac{1}{8}-\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{8}\)
\(2,\\ a,\Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ b,\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3=8=-2^3\\ \Leftrightarrow x=2\\ c,\Leftrightarrow4x^2\left(4x-2\right)-x^3+8x^2=15\\ \Leftrightarrow16x^3-8x^2-x^3+8x^2=15\\ \Leftrightarrow15x^3=15\\ \Leftrightarrow x^3=1\Leftrightarrow x=1\)
b: \(5x^2+3x-2-4x^2+x+5=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
a) \(\Rightarrow x^8-2x^4-8=0\Rightarrow\left(x^4-4\right)\left(x^4+2\right)=0\)
\(\Rightarrow\left(x^2-2\right)\left(x^2+2\right)\left(x^4+2\right)=0\)
\(\Rightarrow x^2=2\Rightarrow x=\pm\sqrt{2}\)(do \(x^2+2\ge2>0,x^4+2\ge2>0\))
b) \(\Rightarrow x^2+4x+3=0\Rightarrow\left(x+1\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
a) 5x(x - 1) = x - 1
5x(x - 1) - (x - 1) = 0
(x - 1) (5x - 1) = 0
TH1: x - 1 = 0
x = 1
TH2: 5x - 1 = 0
5x = 1
x = 1/5
Vay x = 1 hoac x = 1/5.
b) 2(x + 5) - x2 - 5x = 0
2(x + 5) - x(x + 5) = 0
(x + 5) (2 - x) = 0
TH1: x + 5 = 0
x = -5
TH2: 2 - x = 0
x = 2
Vay x = -5 hoac x = 2
a, x = 1
b , x = -5 hoặc x = 2