\(G=\frac{1}{2x9}+\frac{1}{9x7}+\frac{1}{7x19}+.....+\frac{1}{252x509}\)
Tính G
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Q=\(\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{7}+\frac{1}{7}-\frac{1}{19}+...+\frac{1}{252}-\frac{1}{509}\)
=\(\frac{1}{2}-\left(\frac{1}{9}+\frac{1}{9}\right)-\left(\frac{1}{7}+\frac{1}{7}\right)-...-\left(\frac{1}{252}+\frac{1}{252}\right)-\frac{1}{509}\)
=\(\frac{1}{2}-0+0+0+...+0-\frac{1}{509}\)
=\(\frac{1}{2}-\frac{1}{509}\)
=\(\frac{507}{1018}\)
MẤY CÂU KHÁC THÌ TƯƠNG TỰ, CHÚC BẠN MAY MẮN!!!:))
a) \(\frac{1}{2.9}+\frac{1}{9.7}+\frac{1}{7.19}+...+\frac{1}{202.509}=\frac{2}{4.9}+\frac{2}{9.14}+\frac{2}{14.19}+...+\frac{2}{504.509}\)
\(=\frac{2}{5}\left(\frac{5}{4.9}+\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{504.509}\right)\)
\(=\frac{2}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{504}-\frac{1}{509}\right)=\frac{2}{5}\left(\frac{1}{4}-\frac{1}{509}\right)\)
\(=\frac{2}{5}.\frac{505}{2036}=\frac{101}{1018}\)
b) \(\frac{1}{10.9}+\frac{1}{18.13}+...+\frac{1}{802.405}=\frac{2}{10.18}+\frac{2}{18.26}+...+\frac{2}{802.810}\)
\(=\frac{2}{8}\left(\frac{8}{10.18}+\frac{8}{18.26}+...+\frac{8}{802.810}\right)=\frac{1}{4}\left(\frac{1}{10}-\frac{1}{18}+\frac{1}{18}-\frac{1}{26}+...+\frac{1}{802}-\frac{1}{810}\right)\)
\(=\frac{1}{4}\left(\frac{1}{10}-\frac{1}{810}\right)=\frac{1}{4}.\frac{40}{405}=\frac{10}{405}\)
\(\frac{654}{12254}=\frac{12254-11600}{12254}=1+\frac{-11600}{12254}=1+\frac{1}{\frac{12254}{-11600}}=1+\frac{1}{1+\frac{23854}{-11600}}=1+\frac{1}{1+\frac{1}{-\frac{11600}{23854}}}=\)sức gõ công thức có hạn, cứ theo đó mà làm tiếp, đảm bảo sẽ ra ngay kết quả
đúng nha bạn
\(G=\left(\frac{1}{3}-1\right)\left(\frac{1}{6}-1\right)\left(\frac{1}{15}-1\right)\left(\frac{1}{21}-1\right)\left(\frac{1}{36}-1\right)\)
\(\Leftrightarrow G=-\frac{2}{3}.\frac{-5}{6}.\frac{-14}{15}.\frac{-20}{21}.\frac{-35}{36}\)
\(\Leftrightarrow G=\frac{-2.}{3}.\frac{5}{6}.\frac{14}{15}.\frac{20}{21}.\frac{35}{36}\)
\(\Leftrightarrow G=\frac{-2.5.2.7.2.2.5.5.7}{3.2.3.3.5.3.7.2.3.2.3}\)
\(\Leftrightarrow G=\frac{-2^4.5^3.7^2}{2^3.3^6.5.7}\)
\(\Leftrightarrow G=\frac{-2.5^2.7}{3^6}\)
\(\Leftrightarrow G=\frac{-350}{729}\)
P/s : Xin lỗi vì cách giải cùi bắp của mình :((
\(G=\frac{1}{2.9}+\frac{1}{9.7}+\frac{1}{7.19}+...+\frac{1}{252.509}\)
\(G=2.\left(\frac{1}{4.9}+\frac{1}{9.14}+\frac{1}{14.19}+...+\frac{1}{504.509}\right)\)
\(G=\frac{2}{5}.\left(\frac{5}{4.9}+\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{504.509}\right)\)
\(G=\frac{2}{5}.\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{504}-\frac{1}{509}\right)\)
\(G=\frac{2}{5}.\left(\frac{1}{4}-\frac{1}{509}\right)\)
\(G=\frac{2}{5}.\frac{505}{2036}=\frac{101}{1018}\)
Khó quá !!!