cho a+d = c+b và a^2+b^2 chứng minh a, b,c,d lập thành tỉ lệ thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho 4 số dương a, b, c, d. Biết rằng: b = ? và c =? Chứng minh rằng 4 số này lập thành tỉ lệ thức.
\(b=\frac{a+c}{2}\Rightarrow2b=a+c\)
\(c=\frac{2bd}{b+d}\Rightarrow c\left(b+d\right)=2bd\)
\(\Rightarrow c\left(b+d\right)=\left(a+c\right)d\Rightarrow cb+cd=ad+cd\Rightarrow ad=bc\)
Vậy 4 số a,b,c,d lập thành 1 tỉ lệ thức.
\(a+d=b+c\Rightarrow\left(a+d\right)^2=\left(b+c\right)^2\Rightarrow a^2+d^2+2ad=b^2+c^2+2bc.\)
Do \(a^2+d^2=b^2+c^2\Rightarrow2ad=2bc\Rightarrow ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\)
(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d) => \(\frac{a+b+c+d}{a+b-c-d}=\frac{a-b+c-d}{a-b-c+d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có: \(\frac{a+b+c+d}{a+b-c-d}=\frac{a-b+c-d}{a-b-c+d}=\frac{\left(a+b+c+d\right)+\left(a-b+c-d\right)}{\left(a+b-c-d\right)+\left(a-b-c+d\right)}=\frac{\left(a+b+c+d\right)-\left(a-b+c-d\right)}{\left(a+b-c-d\right)-\left(a-b-c+d\right)}\)
=> \(\frac{2\left(a+c\right)}{2\left(a-c\right)}=\frac{2\left(b+d\right)}{2\left(b-d\right)}\) => \(\frac{a+c}{a-c}=\frac{b+d}{b-d}\Rightarrow\frac{a+c}{b+d}=\frac{a-c}{b-d}=\frac{\left(a+c\right)+\left(a-c\right)}{\left(b+d\right)+\left(b-d\right)}=\frac{\left(a+c\right)-\left(a-c\right)}{\left(b+d\right)-\left(b-d\right)}\)
=> \(\frac{a}{b}=\frac{c}{d}\) => a; b; c; d lập thành một tỉ lệ thức