Tìm số tự nhiên y lớn hơn 1 biết tồn tại số tự nhiên n để:
y^2 = 1!+ 2! + 3! +.... + n!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
a: \(x^2\ge0\forall x\)
=>\(x^2+2021\ge2021\forall x\)
Dấu '=' xảy ra khi x=0
b: \(22x^{22}\ge0\forall x;20x^{20}\ge0\forall x\)
Do đó: \(22x^{22}+20x^{20}\ge0\forall x\)
=>\(-22x^{22}-20x^{20}\le0\forall x\)
=>\(B=-22x^{22}-20x^{20}+2022\le2022\forall x\)
Dấu '=' xảy ra khi x=0
Bài 3:
a: 2x-1 là bội của x-3
=>2x-1⋮x-3
=>2x-6+5⋮x-3
=>5⋮x-3
=>x-3∈{1;-1;5;-5}
=>x∈{4;2;8;-2}
b: 2x+1 là ước của 3x+2
=>3x+2⋮2x+1
=>6x+4⋮2x+1
=>6x+3+1⋮2x+1
=>1⋮2x+1
=>2x+1∈{1;-1}
=>2x∈{0;-2}
=>x∈{0;-1}
Bài 1:
n;n+1;n+2;n+3 là bốn số nguyên liên tiếp
=>n(n+1)(n+2)(n+3)⋮4!=24
=>n(n+1)(n+2)(n+3)⋮3 và n(n+1)(n+2)(n+3)⋮8
Có p = n^2(n - 1) + (n - 1) = (n^2 + 1)(n - 1)
Với n = 2 thì p = 5
Với mọi n > 3 thì p là hợp số
Với n < 1 thì p < hoặc = 0
Vậy p = 5 <=> n = 2
Chắc không phải Tony Spicer đoán mò đâu,,,,,,,,,mà là đoán lụi í
p = n3 - n2 + n - 1 = (n3 - n2) + (n - 1) = n2(n - 1) + (n - 1) = (n2 + 1)(n - 1)
Để p là số nguyên tố ta xét các trường hợp:
+) Nếu n - 1 = 1 => n = 2
=> p = (22 + 1)(2 - 1) = 5.1 = 5 là số nguyên tố.( thỏa mãn )
+) Nếu n > 3 => n - 1 > 2
và n2 + 1 > 10
=> p có nhiều hơn 2 ước => p là hợp số (loại)
Vậy n = 2 thì p là số nguyên tố
Cho mình 1` đúng nha
2b nhé bạn!
Giả sử 2002+n2 là số chính phương m2
Hiển nhiên 2002 chia cho 4 dư 2
Ta luôn biết số chính phương chỉ có dạng 4k hoặc 4k+1 (*)
Thì n2 dạng 4k+2 thì theo (*) đây không là số chính phương
Thì n2 dạng 4k+3 thì theo (*) ta lại thấy đây không là số chính phương
Vậy không tồn tại n để 2002+n2 là số chính phương