K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 5:

a: \(x^2\ge0\forall x\)

=>\(x^2+2021\ge2021\forall x\)

Dấu '=' xảy ra khi x=0

b: \(22x^{22}\ge0\forall x;20x^{20}\ge0\forall x\)

Do đó: \(22x^{22}+20x^{20}\ge0\forall x\)

=>\(-22x^{22}-20x^{20}\le0\forall x\)

=>\(B=-22x^{22}-20x^{20}+2022\le2022\forall x\)

Dấu '=' xảy ra khi x=0

Bài 3:

a: 2x-1 là bội của x-3

=>2x-1⋮x-3

=>2x-6+5⋮x-3

=>5⋮x-3

=>x-3∈{1;-1;5;-5}

=>x∈{4;2;8;-2}

b: 2x+1 là ước của 3x+2

=>3x+2⋮2x+1

=>6x+4⋮2x+1

=>6x+3+1⋮2x+1

=>1⋮2x+1

=>2x+1∈{1;-1}

=>2x∈{0;-2}

=>x∈{0;-1}

Bài 1:

n;n+1;n+2;n+3 là bốn số nguyên liên tiếp

=>n(n+1)(n+2)(n+3)⋮4!=24

=>n(n+1)(n+2)(n+3)⋮3 và n(n+1)(n+2)(n+3)⋮8


30 tháng 3 2015

Có p = n^2(n - 1) + (n - 1) = (n^2 + 1)(n - 1)

Với n = 2 thì p = 5

Với mọi n > 3 thì p là hợp số

Với n < 1 thì p < hoặc = 0

Vậy p = 5 <=> n = 2

Chắc không phải Tony Spicer đoán mò đâu,,,,,,,,,mà là đoán lụi í

25 tháng 5 2015

p = n3 - n2 + n - 1 = (n3 - n2) + (n - 1) = n2(n - 1) + (n - 1) = (n2 + 1)(n - 1)

Để p là số nguyên tố ta xét các trường hợp:

+) Nếu n - 1 = 1 => n = 2

=> p = (22 + 1)(2 - 1) = 5.1 = 5 là số nguyên tố.( thỏa mãn )

+) Nếu n > 3 => n - 1 > 2

và n2 + 1 > 10

=> p có nhiều hơn 2 ước => p là hợp số (loại)

Vậy n = 2 thì p là số nguyên tố

Cho mình 1` đúng nha

2 tháng 2 2017

2b nhé bạn!

Giả sử 2002+n2 là số chính phương m2

Hiển nhiên 2002 chia cho 4 dư 2

Ta luôn biết số chính phương chỉ có dạng 4k hoặc 4k+1 (*)

  • Nếu m2 dạng 4k

Thì n2 dạng 4k+2 thì theo (*) đây không là số chính phương

  • Nếu m2 dạng 4k+1

Thì n2 dạng 4k+3 thì theo (*) ta lại thấy đây không là số chính phương

Vậy không tồn tại n để 2002+n2 là số chính phương