cho 2 da thuc :f(x)=3x^3 - 2x^2 + x + 5
g(x)=3x^2 + ax + b
tim a,b sao cho f(x)=(x-1)*g(x)
moi nguoi giai giup em voi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=\left(x-1\right).g\left(x\right)\)
\(\Rightarrow3x^3-2x^2+x+5=\left(x-1\right)\left(3x^2+ax+b\right)\)
\(\Rightarrow3x^3-2x^2+x+5=3x^3+ax^2+bx-3x^2-ax-b\)
\(\Rightarrow-2x^2+x+5=x^2\left(a-3\right)+x\left(b-a\right)-b\)
-Bạn kiểm tra lại đề.
Giải:
a) \(F\left(x\right)+G\left(x\right)-H\left(x\right)\)
\(=4x^2+3x-2+3x^2-2x+5-\left[x\left(5x-2\right)+3\right]\)
\(=4x^2+3x-2+3x^2-2x+5-\left(5x^2-2x+3\right)\)
\(=4x^2+3x-2+3x^2-2x+5-5x^2+2x-3\)
\(=2x^2+3x\)
Để \(F\left(x\right)+G\left(x\right)-H\left(x\right)=0\)
\(\Leftrightarrow2x^2+3x=0\)
\(\Leftrightarrow x\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b) \(F\left(x\right)-3x+5\)
\(=4x^2+3x-2-3x+5\)
\(=4x^2+3\)
Vì \(x^2\ge0;\forall x\)
\(\Leftrightarrow4x^2\ge0;\forall x\)
\(\Leftrightarrow4x^2+3\ge3>0;\forall x\)
Vậy ...
ta co : F{x} - G{x} +H{x} = 2x^2 - 1
ma F{x} -G{X} +H{x} = 5
2x^2 - 1 = 5
2x^2 =5+1
2X^2= 6
x^2= 6: 2
x^2= 3
[x=\(-\sqrt{3}\)
[x= \(\sqrt{3}\)
vay x=\(\sqrt{3}\)
x=\(-\sqrt{3}\)
a)\(f\left(x\right)=x^5-3x^2+7x^4-x^5+2x^2-9x^3+x^2-\frac{1}{4}x+2x-3\)
\(=x^5-x^5+7x^4-9x^3-3x^2+2x^2+x^2-\frac{1}{4}x+2x-3\)
\(=7x^4-9x^3+\frac{7}{4}x-3\)
\(g\left(x\right)=5x^4-x^5+\frac{1}{2}x^2+x^5+x^2-4x^4-2x^3+3x^2+x^3-\frac{1}{4}\)
\(=-x^5+x^5+5x^4-4x^4-2x^3+x^3+\frac{1}{2}x^2+x^2+3x^2-\frac{1}{4}\)
\(=x^4-x^3+\frac{9}{2}x^2-\frac{1}{4}\)
b)\(f\left(1\right)=7.1^4-9.1^3+\frac{7}{4}.1-3=7-9+\frac{7}{4}-3=-\frac{13}{4}\)
\(f\left(-1\right)=7.\left(-1\right)^4-9.\left(-1\right)^3+\frac{7}{4}.\left(-1\right)-3=7+9-\frac{7}{4}-3=\frac{45}{4}\)
\(g\left(1\right)=1^4-1^3+\frac{9}{2}.1^2-\frac{1}{4}=1-1+\frac{9}{2}-\frac{1}{4}=\frac{17}{4}\)
\(g\left(-1\right)=\left(-1\right)^4-\left(-1\right)^3+\frac{9}{2}.\left(-1\right)^2-\frac{1}{4}=1+1+\frac{9}{2}-\frac{1}{4}=\frac{25}{4}\)
c) Ta có: f(x)+g(x)=\(7x^4-9x^3+\frac{7}{4}x-3+x^4-x^3+\frac{9}{2}x^2-\frac{1}{4}=7x^4+x^4-9x^3-x^3+\frac{9}{2}x^2+\frac{7}{4}x-3-\frac{1}{4}\)
\(=8x^4-10x^3+\frac{9}{2}x^2+\frac{7}{4}x-\frac{13}{4}\)
f(x)-g(x) =\(7x^4-9x^3+\frac{7}{4}x-3-x^4+x^3-\frac{9}{2}x^2+\frac{1}{4}=7x^4-x^4-9x^3+x^3-\frac{9}{2}x^2+\frac{7}{4}x-3+\frac{1}{4}\)
\(=6x^4-8x^3-\frac{9}{2}x^2+\frac{7}{4}x-\frac{11}{4}\)
Bài 2 mk giải luôn nhé
f(x)=x^2+4x-5=x^2-x+5x-5
=x(x-1)+5(x-1)
=(x+5)(x-1)
Vậy x=-5 hoặc x=1 là nghiệm của đa thức f(x)
`K(x)=F(x)+G(x)`
`K(x)=(3x^2+2x-5)+(-3x^2-2x+2)`
`= 3x^2+2x-5-3x^2-2x+2`
`= (3x^2-3x^2)+(2x-2x)+(-5+2)`
`= -3`
Bậc của đa thức: `0`
`@` `\text {dnammv}`
a)
xét f(x)=0
=>3x-6=0
=> 3x=6
=> x=2
vậy nghiệm của f(x) là 2
xét g(t)=0
=> -4t-8=0
=> -4t=8
=> t=-2
vậy nghiệm của g(t) là -2
b)
f(x)=1=> 3x-6=1
=> 3x=7
=> x=7/3
g(t)=1=> -4t-8=1
=> -4t=9
=> t=-9/4
a)
xét f(x)=0
=>3x-6=0
=> 3x=6
=> x=2
vậy nghiệm của f(x) là 2
xét g(t)=0
=> -4t-8=0
=> -4t=8
=> t=-2
vậy nghiệm của g(t) là -2
b)
f(x)=1=> 3x-6=1
=> 3x=7
=> x=7/3
g(t)=1=> -4t-8=1
=> -4t=9
=> t=-9/4
Lời giải:
$f(x)=(x-1)g(x)$
$3x^3-2x^2+x+5=(x-1)(3x^2+ax+b)$. Cho $x=1$ thì:
$3.1^3-2.1^2+1+5=0$
Hay $7=0$ (vô lý)
Vậy không tồn tại số $a,b$ nào thỏa mãn.