K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2016

 x+ (x+1) + (x+2) +⋯+ (x+9) = 95 

(x  + 0 ) + ( x + 1 ) + ( x + 2 ) + ... + ( x + 9 ) = 95

( x +x + x + ... + x ) + ( 0 + 1 + 2 + ... + 9 ) = 95

10x + 45 = 95

10x = 95 - 45

10x = 50

x = 50 : 10

x = 5

3 tháng 5 2017

A=x+(x+1)+(x+2)+...+(x+9)=95                                  (Ta đặt tên tổng là A)

A=(x+0)+(x+1)+(x+2)+...+(x+9)=95

A=x.(0+1+2+..+9)=95

Xét S=0+1+2+...+9, là tổng dãy số cách đều nhau 1 đơn vị nên tổng S có số các số hạng là:(9-0):1+1=10

=> Tổng S= (9+0).10:2=45

Vì tổng S có 10 số hạng => tổng A có 10 số hạng x.

10x+45=95

10x=95-45 => x=5.

Vậy x=5

26 tháng 12 2015

tick cho minh

23 tháng 8 2023

a) Giả sử \(x^2+x⋮̸9\)

\(\Rightarrow x^2+x=x\left(x+1\right).x\left(x+1\right)⋮̸9\)

\(\Rightarrow x^2+x+1⋮̸9\)

\(\Rightarrow dpcm\)

b) \(x^2+x+1=3^y\)

\(\Rightarrow x\left(x+1\right)=3^y-1\left(1\right)\)

Ta thấy \(x\left(x+1\right)\) là số chẵn

\(\left(1\right)\Rightarrow3^y-1\) là số chẵn

\(\Rightarrow y\) là số lẻ

\(\Rightarrow\left\{{}\begin{matrix}x\left(x+1\right)=3^y-1\left(x\inℕ\right)\\y=2k+1\left(k\inℕ\right)\end{matrix}\right.\) thỏa đề bài

23 tháng 8 2023

Đính chính

a) Giả sử \(x^2+x\) \(⋮̸9\)

\(\Rightarrow x^2+x=x\left(x+1\right)\) \(⋮̸9\)

\(\Rightarrow x\left(x+1\right).x\left(x+1\right)\) \(⋮̸9\)

\(\Rightarrow x^2+x+1\) \(⋮̸9\)

b) \(x^2+x+1=3^y\)

\(\Rightarrow x\left(x+1\right)=3^y-1\left(1\right)\)

mà \(\left\{{}\begin{matrix}x\left(x+1\right)\\3^y-1\end{matrix}\right.\) là số chẵn

\(\left(1\right)\Rightarrow\) \(\left\{{}\begin{matrix}x\left(x+1\right)=3^y-1=2k\\\forall x;y;k\inℕ\end{matrix}\right.\)

23 tháng 8 2016

\(\left(x+2\right)\left(y+3\right)=9\)

\(=>x+2;y+3\)thuộc \(Ư\left(9\right)\)

Mà \(Ư\left(9\right)=\left\{\left(1;9\right),\left(3;3\right)\right\}\)

Nếu  \(x+2=1=>x=-1\)\(;y+3=9=>y=6\)

Nếu \(x+2=9=>x=7\)\(;\)\(y+3=1=>y=-2\)

Nếu \(x+2=3=>x=1\)\(;\)\(y+3=3=>y=0\)

Vậy............

26 tháng 1 2019

Có (x + 2)(y + 3) = 9 => x + 2; y + 3 ∈ Ư(9)

Mà x, y ∈ N => x + 2; y + 3 ∈ N

=> x + 2; y + 3 ∈ {1; 3; 9}

Lập bảng giá trị:

x + 2193
y + 3913
x-171
y6-20

Đối chiếu điều kiện x; y ∈ N

=> Cặp (x; y) cần tìm là (1; 0).

Số nguyên x sao cho 5 - x là số nguyên âm lớn nhất là Câu hỏi 2:A là tập hợp các số nguyên nhỏ hơn -2. Phần tử lớn nhất của tập A là Câu hỏi 3:Tập hợp các tháng có 31 ngày (trong một năm dương lịch) có  phần tử.Câu hỏi 4:Tìm x sao cho x - 40 : 4 = 15. Trả lời: x =Câu hỏi 5:Tập hợp các số nguyên x thỏa mãn |x-9| - (-2)=10 là {} (Nhập các kết quả theo thứ tự tăng dần, cách nhau bởi dấu...
Đọc tiếp


Số nguyên x sao cho 5 - x là số nguyên âm lớn nhất là 

Câu hỏi 2:


A là tập hợp các số nguyên nhỏ hơn -2. Phần tử lớn nhất của tập A là 

Câu hỏi 3:


Tập hợp các tháng có 31 ngày (trong một năm dương lịch) có  phần tử.

Câu hỏi 4:


Tìm x sao cho x - 40 : 4 = 15. Trả lời: x =

Câu hỏi 5:


Tập hợp các số nguyên x thỏa mãn |x-9| - (-2)=10 là {} 
(Nhập các kết quả theo thứ tự tăng dần, cách nhau bởi dấu ";" )

Câu hỏi 6:


Tổng của ba số nguyên a, b, c biết a+b = 10; a+c = 9; b+c = 5 là 

Câu hỏi 7:


Số tự nhiên x thỏa mãn (x-2014)(x+5) = 0 là 

Câu hỏi 8:


Tập hợp các số nguyên x thỏa mãn (x+10)(x-3) = 0 là {} 
(Nhập các giá trị theo thứ tự tăng dần, cách nhau bởi dấu ";")

Câu hỏi 9:


Số dư của n(n+1)(n+2) khi chia cho 3 là 

Câu hỏi 10:


Số tự nhiên x thỏa mãn x+ (x+1) + (x+2) +⋯+ (x+9) = 95 là 

1
2 tháng 1 2016

Mình sửa câu 4 cho bạn Lan Anh Vu là x=100
x-40:4=15
x-40=15*4
x-40=60
x=60+40
x=100

25 tháng 8 2023

a) Ta đặt \(P\left(x\right)=x^2+x+1\)

\(P\left(x\right)=x^2+x-20+21\)

\(P\left(x\right)=\left(x+5\right)\left(x-4\right)+21\)

Giả sử tồn tại số tự nhiên \(x\) mà \(P\left(x\right)⋮9\) \(\Rightarrow P\left(x\right)⋮3\). Do \(21⋮3\)  nên \(\left(x+5\right)\left(x-4\right)⋮3\)

Mà 3 là số nguyên tố nên suy ra \(\left[{}\begin{matrix}x+5⋮3\\x-4⋮3\end{matrix}\right.\)

Nếu \(x+5⋮3\) thì suy ra \(x-4=\left(x+5\right)-9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)

Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.

Nếu \(x-4⋮3\) thì suy ra \(x+5=\left(x-4\right)+9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)

Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.

Vậy điều giả sử là sai \(\Rightarrow x^2+x+1⋮̸9\)

b) Vì \(x^2+x+1⋮̸9\) nên \(y\le1\Rightarrow y\in\left\{0;1\right\}\)

Nếu \(y=0\Rightarrow x^2+x+1=1\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)

Nếu \(y=1\) \(\Rightarrow x^2+x+1=3\)

\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)

Vậy ta tìm được các cặp số (x; y) thỏa ycbt là \(\left(0;0\right);\left(1;1\right)\)

25 tháng 8 2023

a) Ta đặt 

(

)
=

2
+

+
1
P(x)=x 
2
 +x+1


(

)
=

2
+


20
+
21
P(x)=x 
2
 +x−20+21


(

)
=
(

+
5
)
(


4
)
+
21
P(x)=(x+5)(x−4)+21

Giả sử tồn tại số tự nhiên 

x mà 

(

)

9
P(x)⋮9 


(

)

3
⇒P(x)⋮3. Do 
21

3
21⋮3  nên 
(

+
5
)
(


4
)

3
(x+5)(x−4)⋮3. 

Mà 3 là số nguyên tố nên suy ra 
[

+
5

3


4

3

  
x+5⋮3
x−4⋮3

 

Nếu 

+
5

3
x+5⋮3 thì suy ra 


4
=
(

+
5
)

9

3
x−4=(x+5)−9⋮3 

(

+
4
)
(


5
)

9
⇒(x+4)(x−5)⋮9

Lại có 

(

)

9
P(x)⋮9 nên 
21

9
21⋮9, vô lí.

Nếu 


4

3
x−4⋮3 thì suy ra 

+
5
=
(


4
)
+
9

3
x+5=(x−4)+9⋮3 

(

+
4
)
(


5
)

9
⇒(x+4)(x−5)⋮9

Lại có 

(

)

9
P(x)⋮9 nên 
21

9
21⋮9, vô lí.

Vậy điều giả sử là sai \Rightarrow x^2+x+1⋮̸9

b) Vì x^2+x+1⋮̸9 nên 


1



{
0
;
1
}
y≤1⇒y∈{0;1}

Nếu 

=
0


2
+

+
1
=
1
y=0⇒x 
2
 +x+1=1



(

+
1
)
=
0
⇔x(x+1)=0


[

=
0
(




)

=

1
(




)
⇔[ 
x=0(nhận)
x=−1(loại)

 

Nếu 

=
1
y=1 


2
+

+
1
=
3
⇒x 
2
 +x+1=3



2
+


2
=
0
⇔x 
2
 +x−2=0


(


1
)
(

+
2
)
=
0
⇔(x−1)(x+2)=0


[

=
1
(




)

=

2
(




)
⇔[ 
x=1(nhận)
x=−2(loại)

 

Vậy ta tìm được các cặp số (x; y) thỏa ycbt là 
(
0
;
0
)
;
(
1
;
1
)
(0;0);(1;1)

NV
26 tháng 12 2020

1.

\(5=3xy+x+y\ge3xy+2\sqrt{xy}\)

\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+5\right)\le0\Rightarrow xy\le1\)

\(P=\dfrac{\left(x+1\right)\left(x^2+1\right)+\left(y+1\right)\left(y^2+1\right)}{\left(x^2+1\right)\left(y^2+1\right)}-\sqrt{9-5xy}\)

\(P=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy+x+y+2}{x^2y^2+\left(x+y\right)^2-2xy+1}-\sqrt{9-5xy}\)

Đặt \(xy=a\Rightarrow0< a\le1\)

\(P=\dfrac{\left(5-3a\right)^3-3a\left(5-3a\right)+\left(5-3a\right)^2-2a+5-3a+2}{a^2+\left(5-3a\right)^2-2a+1}-\sqrt{9-5a}\)

\(P=\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{2}.2\sqrt{9-5a}\)

\(P\ge\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{4}\left(4+9-5a\right)\)

\(P\ge\dfrac{-29a^3+161a^2-277a+145}{4\left(5a^2-16a+13\right)}=\dfrac{\left(1-a\right)\left(29a^2-132a+145\right)}{4\left(5a^2-16a+13\right)}\)

\(P\ge\dfrac{\left(1-a\right)\left[29a^2+132\left(1-a\right)+13\right]}{4\left(5a^2-16a+13\right)}\ge0\)

\(P_{min}=0\) khi \(a=1\) hay \(x=y=1\)

Hai phân thức của P rất khó làm gọn bằng AM-GM hoặc Cauchy-Schwarz (nó hơi chặt)

NV
26 tháng 12 2020

2.

Đặt \(A=9^n+62\)

Do \(9^n⋮3\) với mọi \(n\in Z^+\) và 62 ko chia hết cho 3 nên \(A⋮̸3\)

Mặt khác tích của k số lẻ liên tiếp sẽ luôn chia hết cho 3 nếu \(k\ge3\)

\(\Rightarrow\) Bài toán thỏa mãn khi và chỉ khi \(k=2\)

Do tích của 2 số lẻ liên tiếp đều không chia hết cho 3, gọi 2 số đó lần lượt là \(6m-1\)  và \(6m+1\)

\(\Leftrightarrow\left(6m-1\right)\left(6m+1\right)=9^n+62\)

\(\Leftrightarrow36m^2=9^n+63\)

\(\Leftrightarrow4m^2=9^{n-1}+7\)

\(\Leftrightarrow\left(2m\right)^2-\left(3^{n-1}\right)^2=7\)

\(\Leftrightarrow\left(2m-3^{n-1}\right)\left(2m+3^{n-1}\right)=7\)

Pt ước số cơ bản, bạn tự giải tiếp