K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2016

Ta có \(\frac{1}{1+2+3+..+n}=\frac{2}{n\left(n+1\right)}\)

Xét mẫu ta có

\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+2016}\)

\(=2\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{2015\times2016}\right)\)

\(=2\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}\right)\)

\(=2\left(1-\frac{1}{2017}\right)=\frac{2\times2016}{2017}\)

Thế vào ta được

\(D=\frac{2\times2016\times2017}{2\times2016}=2017\)

12 tháng 10 2016

 = 2017

21 tháng 3 2017

bằng 15 hay sao ý

8 tháng 9 2016

\(A=\frac{2.2016}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+2016}}\)

\(A=\frac{2.2016}{1+\frac{1}{2.3:2}+\frac{1}{3.4:2}+\frac{1}{4.5:2}+...+\frac{1}{2016.2017:2}}\)

\(A=\frac{4032}{1+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{3.4}+...+\frac{2}{2016.2017}}\)

\(A=\frac{4032}{1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{2016}-\frac{1}{2017}\right)}\)

\(A=\frac{4032}{1+2\left(\frac{1}{2}-\frac{1}{2017}\right)}\)

\(A=\frac{4032}{1+2\left(\frac{2015}{2017}\right)}\)

\(\Rightarrow A=2017\)

8 tháng 9 2016

\(A=\frac{2.2016}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+2016}}\)

\(A=\frac{2.2016}{1+\frac{1}{2.3:2}+\frac{1}{3.4:2}+\frac{1}{4.5:2}+...+\frac{1}{2016.2017:2}}\)

\(A=\frac{4032}{\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2016.2017}}\)

\(A=\frac{4032}{1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{2}{2016.2017}\right)}\)

\(A=\frac{4032}{1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{2016}-\frac{1}{2017}\right)}\)

\(A=\frac{4032}{1+2\left(\frac{1}{2}-\frac{1}{2017}\right)}\)

\(A=\frac{4032}{1+\frac{2015}{2017}}\)

\(A=2017\)

24 tháng 9 2016

\(C=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+..+\frac{1}{2016}.\left(1+2+3+...+2016\right)\)

\(C=1+\frac{1}{2}.\left(1+2\right).2:2+\frac{1}{3}.\left(1+3\right).3:2+\frac{1}{4}.\left(1+4\right).4:2+...+\frac{1}{2016}.\left(1+2016\right).2016:2\)

\(C=1+3:2+4:2+5:2+...+2017:2\)

\(C=2.\frac{1}{2}+3.\frac{1}{2}+4.\frac{1}{2}+5.\frac{1}{2}+...+2017.\frac{1}{2}\)

\(C=\frac{1}{2}.\left(2+3+4+5+...+2017\right)\)

\(C=\frac{1}{2}.\left(2+2017\right).2016:2\)

\(C=\frac{1}{2}.2019.2016.\frac{1}{2}\)

\(C=2019.504=1017576\)

24 tháng 9 2016

sao lại chia 2

31 tháng 1 2019

đề bài là Chứng minh hả bạn?????

27 tháng 12 2018

\(Tongquat:\)

\(\sqrt{1+\frac{1}{n}+\frac{1}{\left(n+1\right)^2}}=\sqrt{1+\frac{1}{n}+\frac{2}{n}-\frac{2}{n+1}-\frac{2}{n\left(n+1\right)}+\frac{1}{\left(n+1\right)^2}}\)

\(=\sqrt{\left(1+\frac{1}{n}\right)^2-2\left(1+\frac{1}{n}\right)\frac{1}{n+1}+\frac{1}{n+1}}=\sqrt{\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2}\)

\(=|1+\frac{1}{n}-\frac{1}{n+1}|=1+\frac{1}{n}-\frac{1}{n+1}\)

Thay vào ta có:

\(P=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+.........-\frac{1}{2017}\)

\(P=2015+\frac{1}{2}-\frac{1}{2017}=2015+\frac{2015}{4034}\)

27 tháng 7 2017

\(b.\)ghi lại đề nha bn

\(=\frac{2.2306}{1+\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+...+\frac{1}{\frac{230.231}{2}}}\)

\(=\frac{2.2306}{1+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{230.231}}\)

\(=\frac{2.2306}{1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{230.231}\right)}\)

\(=\frac{2.2306}{1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{230}-\frac{1}{231}\right)}\)

\(=\frac{2.2306}{1+2.\left(\frac{1}{2}-\frac{1}{231}\right)}\)

\(=\frac{2.2306}{1+1-\frac{2}{231}}\)

\(=\frac{2.2306}{2-\frac{2}{231}}\)

\(=\frac{2.2306}{2\left(1-\frac{1}{231}\right)}\)

\(=\frac{2306}{1-\frac{1}{231}}\)

mình nha bn thanks nhìu <3

27 tháng 7 2017

a) \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}{\frac{2016}{1}+\frac{2015}{2}+...+\frac{1}{2016}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}{\left(\frac{2015}{2}+1\right)+...+\left(\frac{1}{2016}+1\right)+1}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}{\frac{2017}{2}+...+\frac{2017}{2016}+\frac{2017}{2017}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}{2017.\left(\frac{1}{2}+...+\frac{1}{2016}+\frac{1}{2017}\right)}\)

\(=\frac{1}{2017}\)