6.Chứng minh :
(9931999 - 5571997) : hết cho 5
có lời giải mình mk cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ko thể vì hiệu của [ 9931999 - 5571997] có chữ số tận cùng là 2 mà những số chia hết cho 5 thì phải có chữ số tận cùng là 0 và 5
k mk nha
Chu y : ngoac tron cua mk bi hong nen viet ngoac vuong vay thoi chu khi lam bai ban phai dùng ngoặc tròn nha ^_^ hihi
Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3
Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6 (đpcm)
a: \(B=3+3^2+3^3+...+3^{120}\)
\(=3\left(1+3+3^2+...+3^{119}\right)⋮3\)
b: \(B=3+3^2+3^3+3^4+...+3^{2020}\)
\(=3\left(1+3\right)+...+3^{2019}\left(1+3\right)\)
\(=4\cdot\left(3+...+3^{2019}\right)⋮4\)
+ Cách 1:Do 6 chia 5 dư 1, mũ lên bao nhiẻu vẫn chia 5 dư 1
=> 6100 chia 5 dư 1
=> 6100 - 1 chia hết cho 5 ( đpcm)
+ Cách 2: Ta có:
6100 - 1 = (64)25 - 1 = (...6)25 - 1 = (...6) - 1 = (...5) chia hết cho 5
=> đpcm
Ta có :
6100 - 1
= (64)25 - 1 = .....6 - 1 = ....5 chia hết cho 5
Vậy 6100 - 1 chia hết cho 5 (ĐPCM)
Ủng hộ mk nha !!! ^_^
1) \(5^1+5^2+5^3+...+5^{2003}+5^{2004}=\) \(\left(5^1+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{2001}+5^{2004}\right)\)
\(=5\left(1+5^3\right)+5^2\left(1+5^3\right)+5^3\left(1+5^3\right)+...+5^{2001}\left(1+5^3\right)\)
\(=\left(1+5^3\right).\left(5+5^2+5^3+...+5^{2001}\right)\)
\(=126.\left(5+5^2+5^3+...+5^{2001}\right)⋮126\) \(\left(đpcm\right)\)
4/ Chứng minh rằng :a. 76 +75 – 74 chia hết cho 11 . bạn nào giúp mình với (giải thích cho mình hiểu luôn nha các bạ... - Hoc24
\(7^6+7^5-7^4\)
\(=7^4\left(7^2+7-1\right)\)
\(=7^4\cdot55⋮11\)
Bài 1
\(2^{1995}=2^5\times2^{1990}=32\times2^{1990}\)
Mà \(32\div31\)dư \(1\)nên\(\left(32\times2^{1990}\right)\div31\)dư \(1\)
\(\Rightarrow\left(32\times2^{1900}-1\right)⋮31\)
hay
\(\left(2^{1995}-1\right)⋮31\)
Bài 2
Làm tương tự
(557^1999*436^1999-557^1997*1):5
(436-1):5(triệt tiêu)
(435):5
Vì 435:5 nên số đó cũng chia hết cho 5