Giải phương trình:
x2+\(\frac{4x^2}{\left(x+2\right)^2}=12\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+4x+7=x+4\\ \Leftrightarrow x^2+4x-x+7-4=0\\ \Leftrightarrow x^2+3x+3=0\\ \Leftrightarrow\left(x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}\right)+\dfrac{3}{4}=0\\ \Leftrightarrow\left(x+\dfrac{3}{2}\right)^2=-\dfrac{3}{4}\left(vô.lí\right)\\ \Rightarrow S=\phi\)
ĐKXĐ: x\(\ne-2\)
Ta co
\(x^2+\frac{4x^2}{\left(x+2\right)^2}=12\)
=> \(x^2-2.x.\frac{2x}{x+2}+\frac{4x^2}{\left(x+2\right)^2}\)\(+2.x.\frac{2x}{x+2}\)=12
=> \(\left(x-\frac{2x}{x+2}\right)^2+\frac{4x^2}{x+2}-12=0\)
=>\(\frac{x^4}{\left(x+2\right)^2}+\frac{4x^2}{x+2}-12=0\)(1)
Đặt \(\frac{x^2}{x+2}=y\)
(1)<=>y2+4y-12=0
<=>(y+6)(y-2)=0
Đến đây dễ rồi bạn tự làm tiếp nhé
\(ĐK:x\ne\frac{-1}{3}\)
\(PT\Leftrightarrow\left(\frac{4x-3}{3x+1}+2\right)\left(x^2+3x+1-4x-7\right)=0\)
\(\Leftrightarrow\left(\frac{10x-1}{3x+1}\right).\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\)\(x=\frac{1}{10}\)hoặc x=3 hoặc x=-2
Vậy...........
\(\frac{6}{x^2+2}+\frac{7}{x^2+3}+\frac{12}{x^2+8}-\frac{3\left(x^2+10\right)-14}{x^2+10}-1=0\)
\(\Leftrightarrow\frac{6}{x^2+2}+\frac{7}{x^2+3}+\frac{12}{x^2+8}+\frac{14}{x^2+10}-4=0\)
\(\Leftrightarrow\Leftrightarrow\frac{6}{x^2+2}-1+\frac{7}{x^2+3}-1+\frac{12}{x^2+8}-1+\frac{14}{x^2+10}-1=0\)
\(\Leftrightarrow\frac{4-x^2}{x^2+2}+\frac{4-x^2}{x^2+3}+\frac{4-x^2}{x^2+8}+\frac{4-x^2}{x^2+10}=0\)
\(\Leftrightarrow\left(4-x^2\right)\left(\frac{1}{x^2+2}+\frac{1}{x^2+3}+\frac{1}{x^2+8}+\frac{1}{x^2+10}\right)=0\)
\(\Leftrightarrow4-x^2=0\) (do \(\frac{1}{x^2+2}+\frac{1}{x^2+3}+\frac{1}{x^2+8}+\frac{1}{x^2+10}>0\))
\(\Rightarrow x=\pm2\)
b/
\(2x\left(4x-1\right)\left(8x-1\right)^2=9\)
\(\Leftrightarrow\left(8x^2-2x\right)\left(64x^2-16x+1\right)-9=0\)
Đặt \(8x^2-2x=a\Rightarrow64x^2-16x=8a\)
\(a\left(8a+1\right)-9=0\)
\(\Leftrightarrow8a^2+a-9=0\)
\(\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{9}{8}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}8x^2-2x-1=0\\8x^2-2x+\frac{9}{8}=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{4}\end{matrix}\right.\)
ĐKXĐ : \(x\ne-2\)
\(x^2+\frac{4x^2}{\left(x+2\right)^2}=12\)
Cộng vào hai vê của pt với \(-\frac{4x^2}{x+2}\) được :
\(x^2-\frac{4x^2}{x+2}+\frac{4x^2}{x+2}=12-\frac{4x^2}{x+2}\)
\(\Leftrightarrow\left(x-\frac{2x}{x+2}\right)^2=12-\frac{4x^2}{x+2}\)
\(\Leftrightarrow\left(\frac{x^2}{x+2}\right)^2=12-\frac{4x^2}{x+2}\)
Đặt \(t=\frac{x^2}{x+2}\) thì pt trở thành \(t^2=12-4t\Leftrightarrow t^2+4t-12=0\Leftrightarrow\left(t+6\right)\left(t-2\right)=0\Leftrightarrow\orbr{\begin{cases}t=2\\t=-6\end{cases}}\)
Từ đó dễ dàng tìm ra x