(Nghệ An - 2019)
Cho đường tròn $(O)$ có hai đường kính $AB$ và $MN$ vuông góc với nhau. Trên tia đối của tia $MA$ lấy điểm $C$ khác điểm $M$. Kẻ $MH$ vuông góc với $BC$ ($H$ thuộc $BC$).
a. Chứng minh $BOMH$ là tứ giác nội tiếp.
b. $MB$ cắt $OH$ tại $E$. Chứng minh $ME.MH = BE.HC$.
c. Gọi giao điểm của đường tròn $(O)$ với đường tròn ngoại tiếp $\Delta MHC$ là $K$. Chứng minh 3 điểm $C$, $K$, $E$ thẳng hàng.