K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2016

(2x-1)8=(1-2x)8

(1-2x)8=(1-2x)12

(1-2x)8-(1-2x)12=0

(1-2x)8-(1-(1-2x)4)=0

x=1/2

x=0

25 tháng 4 2015

\(\frac{\left(x-1\right)\left(x+5\right)}{\left(x-1\right)\left(2x+6\right)}=1\) <=> (x - 1)(x + 5) = (x - 1)(2x + 6)

<=> x + 5 = 2x + 6 (cùng chia cả 2 vế cho x - 1)

<=> 0 = x + 1 (cùng bớt cả 2 vế đi x và 5)

<=. x = 0 - 1

<=> x = -1

19 tháng 5 2020

HSG toán 9 Quảng Nam năm 2018-2019

Giải: Từ đẳng thức đã cho suy ra: \(x>\frac{1}{2};y>\frac{1}{2};z>\frac{1}{2}\). Áp dụng (a+b)2 >= 4ab ta có:

\(\left(x+2y\right)^2=\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4\cdot\left(\frac{2x+y}{2}\right)\cdot\frac{3y}{2}\)

\(\Rightarrow\left(x+2y\right)^2\ge3y\left(2x+y\right)\). Dấu "=" xảy ra <=> x=y

\(\Rightarrow\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)

Tương tự \(\hept{\begin{cases}\frac{2y+z}{y\left(y+2z\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\\\frac{2z+x}{z\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\end{cases}}\)

\(\Rightarrow A\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\left("="\Leftrightarrow x=y=z\right)\)

Ta có \(\sqrt{\left(2x-1\right)\cdot1}\le\frac{\left(2x-1\right)+1}{2}\Rightarrow\sqrt{2x-1}\le2\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)

Tương tự \(\frac{1}{y}\le\frac{1}{\sqrt{2y-1}},\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\)Do đó:

\(A\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)

Dấu "=" xảy ra <=> x=y=z=1

Vậy GTLN của A=3 đạt được khi x=y=z=1

9 tháng 1 2017

\(\left|2x-27\right|^{2017}+\left(3y+27\right)^{2016}=0\)

\(\Rightarrow\left|2x-27\right|^{2017}=0\)\(\left(3y+27\right)^{2016}=0\)

+) \(\left|2x-27\right|^{2017}=0\Rightarrow2x-27=0\Rightarrow2x=27\Rightarrow x=\frac{27}{2}\)

+) \(\left(3y+27\right)^{2016}=0\Rightarrow3y+27=0\Rightarrow3y=-27\Rightarrow y=-9\)

Vậy \(x=\frac{27}{2};y=-9\)

25 tháng 8 2016

ta có:

|2x-27|2017≥0

(3y+27)2016 ≥0

vậy |2x-27|2017+(3y+37)2016 ≥0

dấu "=" xảy ra khi

|2x-27|2017=(3y+27)2016=0

|2x-27|2017=0

=> 2x=27

=>x=27/2

(3y+27)2016=0

=> 3y=-27

=> y=-9

vậy với x=27/2 và y=-9 thì x,y thỏa mãn yêu cầu đề bài

17 tháng 3 2017

x=1 hoặc x=-1

17 tháng 3 2017

x=-1 hoặc x=1

5 tháng 3 2022

a, \(\dfrac{4\left(x-3\right)^2-\left(2x-1\right)^2-12x}{12}< 0\)

\(\Rightarrow4\left(x^2-6x+9\right)-4x^2+4x-1-12x< 0\)

\(\Leftrightarrow-32x+35< 0\Leftrightarrow x>\dfrac{35}{32}\)

b, \(\dfrac{24+12\left(x+1\right)-36+3\left(x-1\right)}{12}< 0\)

\(\Rightarrow-12x+15x+9< 0\Leftrightarrow3x< -9\Leftrightarrow x>-3\)