Cho \(a+b\ge2\) . Chứng minh bất đẳng thức \(a^3+b^3\ge a^2+b^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+b^3\le a^4+b^4\)
\(\Leftrightarrow\left(a+b\right)\left(a^3+b^3\right)\le2\left(a^4+b^4\right)\) ( vì \(a+b\ge2\) )
\(\Leftrightarrow a^4+ab^3+a^3b+b^4\le2a^4+2b^4\)
\(\Leftrightarrow ab^3+a^3b\le a^4+b^4\)
\(\Leftrightarrow\left(a^4-a^3b\right)+\left(b^4-ab^3\right)\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (1)
Ta thấy \(a^2+ab+b^2=\left(a^2+ab+\frac{1}{4}b^2\right)+\frac{3}{4}b^2+\left(a+\frac{1}{2}b\right)^2+\frac{3}{4}b^2\ge0\forall ab\)
Nên (1) luôn đúng với mọi a;b
Vậy \(a^3+b^3\le a^4+b^4\)
bài 2
(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi
Giả sử ngược lại \(a^2+b^2+c^2< abc\)
khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)
Tương tự \(b< ac,c< ab\)
Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)
mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên
\(abc>a^2+b^2+c^2\ge ab+bc+ac\)
\(\Rightarrow abc>ab+ac+bc\left(2\right)\)
Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)
Vậy bài toán được chứng minh
3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)
và \(xy+yz+xz\ge1\)
ta phải chứng minh có ít nhất hai trong ba bất đẳng thức sau đúng
\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)
Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử
\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)
Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)
Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)
\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó
\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)
\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)
\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)
mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.
\(VT=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(=\dfrac{a^2}{ab+ca}+\dfrac{b^2}{ab+bc}+\dfrac{c^2}{ca+bc}\ge\left(Schwarz\right)\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
Mà theo Cô-si ta có:
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) (hằng đẳng thức)
\(\Rightarrow VT\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi a=b=c
Áp dụng BĐT \(x^2+y^2\ge2xy\) ( với a,b,c>0) ta có:
\(\frac{a^3}{b+c}+\frac{a\left(b+c\right)}{4}=\frac{a^4}{a\left(b+c\right)}+\frac{a\left(b+c\right)}{4}\ge a^2\) (1)
CMTT ta được
\(\frac{b^3}{a+c}+\frac{b\left(a+c\right)}{4}\ge b^2\) (2)
\(\frac{c^3}{a+b}+\frac{c\left(a+b\right)}{4}\ge c^2\) (3)
Cộng lần lượt từng vế của 3 BĐT (1);(2);(3) ta được:
\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}+\frac{a\left(b+c\right)}{4}+\frac{b\left(c+a\right)}{4}+\frac{c\left(a+b\right)}{4}\ge a^2+b^2+c^2\)
\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}+\frac{2\left(ab+bc+ac\right)}{4}\ge a^2+b^2+c^2\)
\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge a^2+b^2+c^2-\frac{ab+bc+ca}{2}\) (*)
Áp dụng BĐT \(a^2+b^2+c^2\ge ab+bc+ca\)với 3 số a,b,c>0 ta được:
\(\frac{a^2+b^2+c^2}{2}\ge\frac{ab+bc+ca}{2}\)
Thay vào pt (*) ta được:
\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge a^2+b^2+c^2-\frac{a^2+b^2+c^2}{2}\)
\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge\frac{a^2+b^2+c^2}{2}\left(đpcm\right)\)
k tớ nha !!!
a) \(\Leftrightarrow a-2\sqrt{ab}+b\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (đúng)
b) \(\Leftrightarrow\frac{a^2+b^2}{2}\ge\frac{\left(a+b\right)^2}{4}\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\) (đúng)
Ta có: \(a^2+\dfrac{1}{4}\ge a\)
Tương tự: \(\left\{{}\begin{matrix}b^2+\dfrac{1}{4}\ge b\\c^2+\dfrac{1}{4}\ge c\end{matrix}\right.\)
Cộng 3 cái vế theo vế ta được ĐPCM
Lời giải:
Điều kiện: \(a>b\geq 0\)
Áp dụng BĐT Cô-si cho các số dương ta có:
\(a+\frac{4}{(a-b)(b+1)^2}=a-b+b+\frac{4}{(a-b)(b+1)^2}\)
\(=(a-b)+\frac{b+1}{2}+\frac{b+1}{2}+\frac{4}{(a-b)(b+1)^2}-1\)
\(\geq 4\sqrt[4]{(a-b).\frac{b+1}{2}.\frac{b+1}{2}.\frac{4}{(a-b)(b+1)^2}}-1\)
\(=4-1=3\)
Ta có đpcm
Dấu "=" xảy ra khi \(a-b=\frac{b+1}{2}=\frac{4}{(a-b)(b+1)^2}\Leftrightarrow a=2; b=1\)
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
\(=\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
Ta c/m BĐT phụ: \(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\)( b tự c/m nhé. Chuyển vế, c/m VP>=0 là xong )
\(\Rightarrow\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{2.\frac{1}{3}\left(a+b+c\right)^2}=\frac{1}{\frac{2}{3}}=\frac{3}{2}\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
đpcm
\(a+b\ge2\Rightarrow a+b-2\ge0\)
Ta có \(a^2\left(a-1\right)+b^2\left(b-1\right)\ge0\Leftrightarrow a^2\left(a-1\right)+b^2\left(b-1\right)-\left(a-1\right)-\left(b-1\right)+a+b-2\ge0\)
\(\Leftrightarrow\left(a-1\right)\left(a^2-1\right)+\left(b-1\right)\left(b^2-1\right)+a+b-2\ge0\)
\(\Leftrightarrow\left(a-1\right)^2\left(a+1\right)+\left(b-1\right)^2\left(b+1\right)+a+b-2\ge0\) luôn đúng với a,b không âm và \(a+b\ge2\)
Từ đó có điều phải chứng minh.