K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2016

Ta có \(\frac{4a^2}{a-1}=\frac{4a^2-4+4}{a-1}=\frac{4\left(a^2-1\right)+4}{a-1}\)

\(=\frac{4\left(a-1\right)\left(a+1\right)+4}{a-1}=4\left(a+1\right)+\frac{4}{a-1}\)

\(=4\left(a-1\right)+\frac{4}{a-1}+8\)

Vì \(a>1\Rightarrow a-1>0\), áp dụng bđt cosi cho 2 số 4(a-1) và \(\frac{4}{a-1}\)ta được

\(4\left(a-1\right)+\frac{4}{a-1}\ge2\sqrt{\frac{4\left(a-1\right).4}{a-1}}=2\sqrt{4^2}=8\)

\(\Leftrightarrow4\left(a-1\right)+\frac{4}{a-1}+8\ge16\)

\(\Leftrightarrow\frac{4a^2}{a-1}\ge16\)             (1)

Chững minh tương tự, ta được

\(\frac{5b^2}{b-1}\ge20\)                     (2)

\(\frac{3c^2}{c-1}\ge12\)                    (3)

Cộng (1)(2)(3) ta được

\(\frac{4a^2}{a-1}+\frac{5b^2}{b-1}+\frac{3b^2}{c-1}\ge48\)

19 tháng 5 2018

Ta có : ( x - 2 )2 \(\ge\)\(\Leftrightarrow\)x2 - 4x + 4 \(\ge\)0

\(\Rightarrow\)  x2 \(\ge\)4x - 4 \(\Rightarrow\)x2 \(\ge\)4 . ( x - 1 ) \(\Rightarrow\)\(\frac{x^2}{x-1}\)\(\ge\)4

\(\Rightarrow\frac{4a^2}{a-1}+\frac{5b^2}{b-1}+\frac{3c^2}{c-1}\ge4.4+5.4+3.4=48\)

19 tháng 5 2018

qua vo van

19 tháng 5 2018

Thôi làm luôn nãy h chém nhiều mỏi tay quá. Bổ sung điều kiện a;b;c>1

\(\dfrac{4a^2}{a-1}+\dfrac{5b^2}{b-1}+\dfrac{3c^2}{c-1}\ge48\)

\(\Rightarrow\left(\dfrac{4a^2}{a-1}-16\right)+\left(\dfrac{5b^2}{b-1}-20\right)+\left(\dfrac{3c^2}{c-1}-12\right)\ge0\)

\(\Rightarrow\dfrac{4a^2-16a+16}{a-1}+\dfrac{5b^2-20b+20}{b-1}+\dfrac{3c^2-12c+12}{c-1}\ge0\)

\(\Rightarrow\dfrac{4\left(a-2\right)^2}{a-1}+\dfrac{5\left(b-2\right)^2}{b-1}+\dfrac{3\left(c-2\right)^2}{c-1}\ge0\) (đúng)

Dấu "=" khi \(a=b=c=2\)

4 tháng 4 2017

a) Ta có:

\(\dfrac{a^2}{a-1}\) \(\geq\) 4(*)

\(\Leftrightarrow\) a2 \(\geq\) 4.(a-1)

\(\Leftrightarrow\) a2 \(\geq\) 4a-4

\(\Leftrightarrow\) a2-4a+4 \(\geq\) 0

\(\Leftrightarrow\) (a-2)2 \(\geq\) 0(**)

Ta có BĐT(**) luôn đúng nên suy ra BĐT(*) luôn đúng

Dấu = xảy ra khi và chỉ khi a=2

B) Áp dụng câu a ta được:

\(\dfrac{4a^2}{a-1}=4.\dfrac{a^2}{a-1}\) \(\geq\) 4.4=16(1)

\(\dfrac{5b^2}{b-1}=5.\dfrac{b^2}{b-1}\) \(\geq\) 5.4=20(2)

\(\dfrac{3c^2}{c-1}=3.\dfrac{c^2}{c-1}\) \(\geq\) 3.4=12(3)

Cộng các BĐT(1),(2),(3) ta được

\(\dfrac{4a^2}{a-1}+\dfrac{5b^2}{b-1}+\dfrac{3c^2}{c-1}\) \(\geq\) 16+20+12=48

Dấu = xảy ra khi và chỉ khi a=b=c=2

Đặt A= \(\dfrac{4a^2}{a-1}+\dfrac{8b^2}{b-1}+\dfrac{12c^2}{c-1}\)

Áp dụng BĐT đã CM ta có:

A= \(\dfrac{4a^2}{a-1}+\dfrac{8b^2}{b-1}+\dfrac{12c^2}{c-1}\) \(\geq\) 4.4+8.4+12.4=16+32+48=96

\(\Rightarrow\) \(\dfrac{4a^2}{a-1}+\dfrac{8b^2}{b-1}+\dfrac{12c^2}{c-1}\) \(\geq\) 96

hay A \(\geq\) 96

Dấu = xảy ra khi và chỉ khi a=b=c=2

Vậy MinA=96 khi và chỉ khi a=b=c=2

4 tháng 4 2017

a)

Ta có :

\(\dfrac{a^2}{a-1}\ge4\) (1)

\(\Leftrightarrow\dfrac{a^2}{a-1}\ge\dfrac{4a-4}{a-1}\left(\forall a-1\ne0\right)\)

\(\Leftrightarrow a^2\ge4a-4\)

\(\Leftrightarrow a^2-4a+4\ge0\)

\(\Leftrightarrow\left(a-2\right)^2\ge0\)(luôn đúng) (2)

BĐT (2) đúng suy ra BĐT (1) luôn đúng

Dấu bằng xảy ra chỉ khi và khi a = 2

2 tháng 7 2016

Bài 1:

Đặt \(a^2=x;b^2=y;c^2=z\)

Ta có:\(\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\le\frac{3}{\sqrt{2}}\)

Áp dụng BĐT cô si ta có:

\(\sqrt{\frac{x}{x+y}}=\frac{1}{\sqrt{2}}\sqrt{\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}\frac{3\left(x+z\right)}{2\left(x+y+z\right)}}\)

\(\le\frac{1}{2\sqrt{2}}\left[\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}+\frac{3\left(x+z\right)}{2\left(x+y+z\right)}\right]\)

Tương tự với \(\sqrt{\frac{y}{y+z}}\)và \(\sqrt{\frac{z}{z+x}}\)

Cộng lại ta được:

\(\frac{\sqrt{2}}{3}\left[\frac{x\left(x+y+z\right)}{\left(x+y\right)\left(x+z\right)}+\frac{y\left(x+y+z\right)}{\left(y+z\right)\left(y+x\right)}+\frac{z\left(x+y+z\right)}{\left(z+x\right)\left(z+y\right)}\right]+\frac{3}{2\sqrt{2}}\le\frac{3}{2\sqrt{2}}\)

Sau đó bình phương hai vế rồi

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)đẳng thức đúng

Vậy...

Bài 2:

Trước hết ta chứng minh bất đẳng thức sau:

\(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\le\frac{1}{3}\)

Nhân cả hai vế bđt với 4(a+b+c)4(a+b+c) rồi thu gọn ta được bđt sau: 

\(\frac{4a\left(a+b+c\right)}{4a+4b+c}+\frac{4b\left(a+b+c\right)}{4b+4c+a}+\frac{4c\left(a+b+c\right)}{4c+4a+b}\)\(\le\frac{4}{3}\left(a+b+c\right)\)

\(\left[\frac{4a\left(a+b+c\right)}{4a+4b+}-a\right]+\left[\frac{4b\left(a+b+c\right)}{4b+4c+a}-b\right]+\left[\frac{4c\left(a+b+c\right)}{4c+4a+b}-c\right]\le\frac{a+b+c}{3}\)

\(\frac{ca}{4a+4b+c}+\frac{ab}{4b+4c+a}+\frac{bc}{4c+4a+b}\le\frac{a+b+c}{9}\)

Áp dụng bđt cauchy-Schwarz ta có \(\frac{ca}{4a+4b+c}=\frac{ca}{\left(2b+c\right)+2\left(2a+b\right)}\)\(\le\frac{ca}{9}\left(\frac{1}{2b+c}+\frac{2}{2a+b}\right)\)

Từ đó ta có:

\(\text{∑}\frac{ca}{4a+4b+c}\le\frac{1}{9}\text{∑}\left(\frac{ca}{2b+c}+\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ab}{2b+c}\right)=\frac{a+b+c}{9}\)

Đặt VT=A rồi áp dụng bđt cauchy-Schwarz cho VT ta có 

\(T^2\le3\left(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\right)\)\(\le3\cdot\frac{1}{3}=1\Leftrightarrow T\le1\)

Dấu = xảy ra khi a=b=c 

c bạn tự làm nhé mình mệt rồi :D

2 tháng 7 2016

- Ôi má ơi, má patient dử dậy :)