K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

SA vuông gớc (ABCD)

=>(SM;(ABCD))=góc SMA

=>cos(SM;(ABCD))=cos SMA=AM/SM

(SC;(ABCD))=góc SCA

=>góc SCA=45 độ

=>ΔSAC vuông cân tại A

=>AS=AC=căn AB^2+BC^2=4a

=>SM^2=SA^2+AM^2=29a^2

=>SM=a*căn 29

=>cos(SM;(ABCD))=AM/SM=căn 377/29

NV
17 tháng 9 2021

\(SA\perp\left(ABCD\right)\Rightarrow\widehat{SMA}\) là góc giữa SM và đáy

\(\Rightarrow\widehat{SMA}=60^0\Rightarrow SA=AM.tan60^0=\sqrt{3a^2+\left(\dfrac{2a}{2}\right)^2}.\sqrt{3}=2a\sqrt{3}\)

Qua B kẻ đường thẳng song song AM cắt AD kéo dài tại E

\(\Rightarrow AM||\left(SBE\right)\Rightarrow d\left(AM;SB\right)=d\left(AM;\left(SBE\right)\right)=d\left(A;\left(SBE\right)\right)\)

Từ A kẻ \(AH\perp BE\) , từ A kẻ \(AK\perp SH\Rightarrow AK=d\left(A;\left(SBE\right)\right)\)

\(\widehat{DAM}=\widehat{AEB}\) (đồng vị) , mà \(\widehat{BAH}=\widehat{AEB}\) (cùng phụ \(\widehat{ABH}\))

\(\Rightarrow\widehat{DAM}=\widehat{BAH}\)

\(\Rightarrow AH=AB.cos\widehat{BAH}=AB.cos\widehat{DAM}=\dfrac{AB.AD}{AM}=\dfrac{2a.a\sqrt{3}}{2a}=a\sqrt{3}\)

\(\dfrac{1}{AK^2}=\dfrac{1}{AH^2}+\dfrac{1}{SA^2}=\dfrac{1}{3a^2}+\dfrac{1}{12a^2}=\dfrac{5}{12a^2}\)

\(\Rightarrow AK=\dfrac{2a\sqrt{15}}{5}\)

NV
17 tháng 9 2021

undefined

18 tháng 1 2017

Đáp án A

2 tháng 5 2017

 

Đáp án A

 

∆ DCM là tam giác đều cạnh a

=> SH ⊥ (ABCD) với H là tâm của  ∆ DCM

Do đó (SA;(ABCD))

31 tháng 3 2017

5 tháng 10 2019

Đáp án A

30 tháng 9 2019

Chọn C

9 tháng 2 2019

24 tháng 9 2019

3 tháng 7 2018

Đáp án B

Dễ thấy 

Gọi H là trung điểm của AB 

Tam giác MHN vuông tại H, có 

Tam giác MHC vuông tại H, có 

Tam giác MNC, có  c o s M N C ^

Vậy cos(MN;(SAC)) =  sin M N C   ^ = 1 - cos 2 M N C ^ = 55 10