cho abc chia het cho 27
chung to rang bca chia het cho 27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt abc = A
Do A chia hết cho 37 => 10A chia hết cho 37
=> 10 . abc chia hết cho 37
=> 10 ( 100a + 10b + c ) chia hết cho 37
=> 1000a + 100b + 10c chia hết cho 37
=> ( 100b + 10c + a ) + 999a chia hết cho 37
=> bca + 999a chia hết cho 37 ( vì 999a cx chia hết cho 37 )
=> bca chia hết cho 37 ( đpcm )
ta có:abc-bca=(a.100+b.10+c)-(b.100+c.10+a)
=(a.100-a)-(b.100-b.10)-(c.10-c)
=a.99+b.90-c.9
=a.9.11+b.9.10+c.9
=9.(a.11+b.10+c)
vì 9 chia hết cho 9 =>9.(a.11+b.10+c) chia hết cho 9 hay abc-bca chia hết cho 9
Lời giải:
$\overline{abc}=100a+10b+c\vdots 37$
$\Rightarrow 37.3.a-(100a+10b+c)\vdots 37$
$\Rightarrow 11a-10b-c\vdots 37$.
Khi đó
$\overline{bca}=100b+10c+a=111a-10(11a-10b-c)\vdots 37$ (do $111a\vdots 37$ và $11a-10b-c\vdots 37$)
$\overline{cab}=100c+10a+b=1110a-999b-100(11a-10b-c)\vdots 37$ do $1110a\vdots 37; 999b\vdots 37; 11a-10b-c\vdots 37$
(abc) chia hết cho 37=> 100.a + 10.b + c chia hết cho 37
=> 1000.a + 100.b + 10.c chia hết cho 37
=> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
=> 100.b + 10.c + a = (bca) chia hết cho 37
**** đi nhé