Cmr với x , a là các số nguyên thì:
X(x+a)(x+2a)(x+3a)+a^4 là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\Leftrightarrow x\left(y+1\right)^2=32y\Leftrightarrow x=\dfrac{32y}{\left(y+1\right)^2}\)
Do y và y+1 nguyên tố cùng nhau \(\Rightarrow32⋮\left(y+1\right)^2\)
\(\Rightarrow\left(y+1\right)^2=\left\{4;16\right\}\)
\(\Rightarrow...\)
b.
\(2a^2+a=3b^2+b\Leftrightarrow2\left(a-b\right)\left(a+b\right)+a-b=b^2\)
\(\Leftrightarrow\left(2a+2b+1\right)\left(a-b\right)=b^2\)
Gọi \(d=ƯC\left(2a+2b+1;a-b\right)\)
\(\Rightarrow b^2\) chia hết \(d^2\Rightarrow b⋮d\) (1)
Lại có:
\(\left(2a+2b+1\right)-2\left(a-b\right)⋮d\)
\(\Rightarrow4b+1⋮d\) (2)
(1);(2) \(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow2a+2b+1\) và \(a-b\) nguyên tố cùng nhau
Mà tích của chúng là 1 SCP nên cả 2 số đều phải là SCP (đpcm)
1) a) Để x > 0
=> \(2a-5< 0\)
\(\Rightarrow2a< 5\)
\(\Rightarrow a< 2,5\)
\(\text{Vậy }x>0\Leftrightarrow a< 2,5\)
b) Để x < 0
\(\Rightarrow2a-5>0\)
\(\Rightarrow2a>5\)
\(\Rightarrow a>2,5\)
\(\text{Vậy }x< 0\Leftrightarrow a>2,5\)
c) Để x = 0
\(\Rightarrow2a-5=0\)
\(\Rightarrow2a=5\)
\(\Rightarrow a=2,5\)
\(\text{Vậy }x=0\Leftrightarrow a=2,5\)
2) \(\text{Vì }a\inℤ\Rightarrow3a-5\inℤ\)
\(\text{mà }x\inℤ\Leftrightarrow3a-5⋮4\)
\(\Rightarrow3a-5\in B\left(4\right)\)
\(\Rightarrow3a-5\in\left\{0;4;8;...\right\}\)
\(\Rightarrow3a\in\left\{5;9;13;....\right\}\)
\(\Rightarrow a\in\left\{\frac{5}{3};3;\frac{13}{3};6;....\right\}\)
\(\text{Mà }a\inℤ\Rightarrow a\in\left\{3;6;9;...\right\}\text{thì }x\inℤ\)
Ta có \(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)
\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
Đặt \(x^2+5xy+5y^2=t\) thì:
\(A=\left(t-y^2\right)\left(t+y^2\right)+y^4=t^2-y^4+y^4=t^2=\left(x^2+5xy+5y^2\right)^2\)
Vì \(x,y\in Z\) nên \(x^2\in Z,\)\(5xy\in Z,\)\(5y^2\in Z\)\(\Rightarrow\)\(x^2+5xy+5y^2\in Z\)
Vậy A là số chính phương.
Câu 2: Nếu a,b là số nguyên tố lớn hơn 3 => a,b lẻ
vì a ;b lẻ nên a;b chia 4 dư 1 hoặc 3(vì nếu dư 2 thì a ;b chẵn) đặt a = 4k +x ; b = 4m + y
với x;y = {1;3}
ta có:
a^2 - b^2 = (a-b)(a+b) = (4k -4m + x-y)(4k +4m +x+y) =
16(k-m)(k+m) + 4(k-m)(x+y) + 4(k+m)(x-y) + (x-y)(x+y)
nếu x = 1 ; y = 3 và ngược lại thì x+y chia hết cho 4 và x-y chia hết cho 2
=> 16(k-m)(k+m) + 4(k-m)(x+y) + 4(k+m)(x-y) + (x-y)(x+y) chia hết cho 8
=> a^2 - b^2 chia hết cho 8
nếu x = y thì
x-y chia hết cho 8 và x+y chia hết cho 2
=> 4(k-m)(x+y) chia hết cho 8 và 4(k+m)(x-y) + (x-y)(x+y) chia hết cho 8
=> a^2 - b^2 chia hết cho 8
vậy a^2 - b^2 chia hết cho 8 với mọi a,b lẻ (1)
ta có: a;b chia 3 dư 1 hoặc 2 => a^2; b^2 chia 3 dư 1
=> a^2 - b^2 chia hết cho 3 (2)
từ (1) và (2) => a^2 -b^2 chia hết cho 24
Tick nha TFBOYS