\(\frac{3x+2}{5x+7}=\frac{5x-1}{5x+1}\) tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3x+2}{5x+7}=\frac{3x-1}{5x+1}\)
\(\Rightarrow\left(3x+2\right)\left(5x+1\right)=\left(3x-1\right)\left(5x+7\right)\)
\(\Rightarrow15x^2+10x+3x+2=15x^2-5x+21x-7\)
\(3x=9\)
\(x=3\)
Ta có: (3x+2)(5x+1)=(5x+7)(3x-1) (ĐKXĐ: x khác -7/5, x khác -1/5)
=> 15x2+13x+2=15x2+16x-7
=> 3x-9=0 =>x=3 (chọn)
=>(3x+2)(5x+1)=(5x+7)(3x-1)
(3x)(5x+1)+2(5x+1)=(5x)(3x-1)+7(3x-1)
15x2+3x+10x+2=15x2-5x+21x-7
(15x2-15x2)+(3x+10x+5x-21x)=-7-2
0-3x=-9
-3x=-9
x=(-9)/(-3)
x=3
\(\frac{3x+2}{5x+7}\)=\(\frac{3x-1}{5x+1}\)
\(\Rightarrow\)\(\frac{3x+2}{3x-1}\)= \(\frac{5x+7}{5x+1}\)\(\Rightarrow\)1+\(\frac{3}{3x-1}\)=1+\(\frac{6}{5x+1}\)
\(\Rightarrow\)\(\frac{3}{3x-1}\)= \(\frac{6}{5x+1}\)\(\Rightarrow\)3.(5x+1) = 6.(3x-1)
\(\Rightarrow\)15x+3 = 18x -6
\(\Rightarrow\)3x = 6 +3
\(\Rightarrow\)x =3
Lời giải:
Áp dụng BĐT AM-GM ta có:
\(4x^2+1\geq 4x\)
\(\Rightarrow \left\{\begin{matrix} 5x^2-x+3\geq x^2+3x+2\\ 5x^2+x+\geq x^2+5x+6\\ 5x^2+3x+13\geq x^2+7x+12\\ 5x^2+5x+21\geq x^2+9x+20\end{matrix}\right.\)
\(\text{VT}\leq \frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}\)
\(\Leftrightarrow \text{VT}\leq \frac{1}{(x+1)(x+2)}+\frac{1}{(x+2)(x+3)}+\frac{1}{(x+3)(x+4)}+\frac{1}{(x+4)(x+5)}\)
\(\Leftrightarrow \text{VT}\leq \frac{(x+2)-(x+1)}{(x+1)(x+2)}+\frac{(x+3)-(x+2)}{(x+2)(x+3)}+\frac{(x+4)-(x+3)}{(x+3)(x+4)}+\frac{(x+5)-(x+4)}{(x+4)(x+5)}\)
\(\Leftrightarrow \text{VT}\leq \frac{1}{x+1}-\frac{1}{x+5}\)
\(\Leftrightarrow \text{VT}\leq \frac{4}{x^2+6x+5}\)
Dấu "=" xảy ra khi $4x^2=1, x>0$ hay $x=\frac{1}{2}$
Vậy $x=\frac{1}{2}$ là nghiệm của PT.
<=>(3x+2)(5x+1)=(3x-1)(5x+7)
<=>\(15x^2+10x+3x+2=15x^2-5x+21x-7\)
<=>-3x=-9
<=>x=3
tick hộ mình nhá
a ) \(\frac{3x+2}{5x+7}=\frac{3x-1}{5x+1}\)
\(\Leftrightarrow\left(3x+2\right)\left(5x+1\right)=\left(3x-1\right)\left(5x+7\right)\)
\(\Leftrightarrow3x\left(5x+1\right)+2\left(5x+1\right)=3x\left(5x+7\right)-\left(5x+7\right)\)
\(\Leftrightarrow15x^2+3x+10x+2=15x^2+21x-5x-7\)
\(\Leftrightarrow15x^2+13x+2=15x^2+16x-7\)
\(\Leftrightarrow13x+2=16x-7\)
\(\Leftrightarrow13x-16x=-7-2\)
\(\Leftrightarrow-3x=-9\)
\(\Rightarrow x=3\)
b ) tương tự
a) Ta có: \(\frac{3x+2}{5x+7}=\frac{3x-1}{5x+1}\)
\(\Leftrightarrow\left(3x+2\right)\left(5x+1\right)=\left(5x+7\right)\left(3x-1\right)\)
\(\Leftrightarrow3x\left(5x+1\right)+2\left(5x+1\right)=5x\left(3x-1\right)+7\left(3x-1\right)\)
\(\Leftrightarrow15x^2+3x+10x+2=15x^2-5x+21x-7\)
\(\Leftrightarrow15x^2-15x^2+3x+10x+5x-21x=-7-2\)
\(\Leftrightarrow-3x=-9\)
\(\Leftrightarrow x=3\)
Vậy x = 3
b) Ta có: \(\frac{x+1}{2x+1}=\frac{0,5x+2}{x+3}\Leftrightarrow\left(x+1\right)\left(x+3\right)=\left(2x+1\right)\left(0,5x+2\right)\)
\(\Leftrightarrow x\left(x+3\right)+\left(x+3\right)=2x\left(0,5x+2\right)+\left(0,5x+2\right)\)
\(\Leftrightarrow x^2+3x+x+3=x^2+4x+0,5x+2\)
\(\Leftrightarrow x^2-x^2+3x+x-4x-0,5x=2-3\)
\(\Leftrightarrow-0,5x=-1\Leftrightarrow x=2\)
Vậy x = 2
0.4736842105
\(\frac{3x+2}{5x+7}=\frac{5x-1}{5x+1}\)
\(\Leftrightarrow\left(3x+2\right)\left(5x+1\right)=\left(5x-1\right)\left(5x+7\right)\)
\(\Leftrightarrow15x^2+3x+10x+2=25x^2+35x-5x-7\)
\(\Leftrightarrow25x^2+30x-7-15x^2-13x-2=0\)
\(\Leftrightarrow10x^2+17x-9=0\)
.............