K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2016

e học mới có lớp 5 tuy em lớn nhất tiểu học 1 năm nữa là em nhỏ nhất cơ sở

8 tháng 10 2016

tớ mới lớp 6

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Qtheo thứ tự là trung điểm của AD, AF, EF, ED.a) Tứ giác MNPQ là hình gì? Vì sao?7b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M quaAB, E là giao điểm của MH và AB....
Đọc tiếp

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Q
theo thứ tự là trung điểm của AD, AF, EF, ED.
a) Tứ giác MNPQ là hình gì? Vì sao?

7

b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?
c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?
Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M qua
AB, E là giao điểm của MH và AB. Gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK
và AC.
a) Xác định dạng của các tứ giác AEMF, AMBH, AMCK.
b) Chứng minh rằng H đối xứng với K qua A.
c) Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông?
Bài 5: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua trung điểm
M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

1

https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem

Bạn xem tại link này nhé

Học tốt!!!!!!

MỌI NGƯỜI ƠI GIÚP MÌNH LÀM MẤY BÀI HÌNH NÀY VỚI ..........VẼ HÌNH HỘ MÌNH NHA !!!!!!!bài 1)cho tam giác ABC có 3 góc nhọn M là một điểm bất kỳ nằm trong tam giác gọi A1,B1,C1 là các điểm đối xứng với M qua trung điểm của cạnh BC,CA,AB a)chứng minh các đường A1,BB1,CC1 đồng quy b)xác định vị trí của điểm M để hình lục giác AB1CA1BC1 có các cạnh bằng nhau Bài 2:cho tam giác đều ABC có các...
Đọc tiếp

MỌI NGƯỜI ƠI GIÚP MÌNH LÀM MẤY BÀI HÌNH NÀY VỚI ..........VẼ HÌNH HỘ MÌNH NHA !!!!!!!

bài 1)cho tam giác ABC có 3 góc nhọn M là một điểm bất kỳ nằm trong tam giác gọi A1,B1,C1 là các điểm đối xứng với M qua trung điểm của cạnh BC,CA,AB 

a)chứng minh các đường A1,BB1,CC1 đồng quy 

b)xác định vị trí của điểm M để hình lục giác AB1CA1BC1 có các cạnh bằng nhau 

Bài 2:cho tam giác đều ABC có các đường cao AD,BE,CF cắt nhau ở H.Gọi I,K,M lần lượt là trung điểm của các cạnh HA,HB,HC

C/M lục giác DKFIEM là lục giác đều 

Bài 3)Cho tam giác vuông ABC có cạnh góc vuông=a cạnh huyền=2a.Tính diện tích tam giác  ABC

Bài 4)cho tam giác vuông ABC vuông tại A có đường phân giác BD.Biết AD=3cm,DC=5cm.Tính diện tích tam giác ABC 

Bài 5)Cho tam giác ABC vuông cân AB=AC=6cm M thuộc BC.Gọi E,F theo thứ tự là hình chiếu của M trên AB,AC 

a)Tính chu vi tứ giác AEMF 

b)Xác định vị trí của điểm M trên BC để tứ giác AEMF có diện tích lớn nhất 

1
15 tháng 11 2015

tick cho mình rồi mình giải cho

12 tháng 11 2021

o giả thiết cho IJ không song song với CDvà chúng cùng nằm trong mặt phẳng (BCD) nên khi kéo dài chúng gặp nhau tại một điểm.

Gọi K=IJ∩CDK=IJ∩CD.

Ta có : M là điểm chung thứ nhất của (ACD) và (IJM);

{K∈IJIJ⊂(MIJ)⇒K∈(MIJ){K∈IJIJ⊂(MIJ)⇒K∈(MIJ) và  {K∈CDCD⊂(ACD)⇒K∈(ACD){K∈CDCD⊂(ACD)⇒K∈(ACD)

Vậy (MIJ)∩(ACD)=MK(MIJ)∩(ACD)=MK

Quảng cáo

b) Với L=JN∩ABL=JN∩AB ta có:

{L∈JNJN⊂(MNJ)⇒L∈(MNJ){L∈JNJN⊂(MNJ)⇒L∈(MNJ)

{L∈ABAB⊂(ABC)⇒L∈(ABC){L∈ABAB⊂(ABC)⇒L∈(ABC)

Như vậy L là điểm chung thứ nhất của hai mặt phẳng (MNJ) và (ABC)

Gọi P=JL∩AD,Q=PM∩ACP=JL∩AD,Q=PM∩AC

Ta có: 

{Q∈PMPM⊂(MNP)⇒Q∈(MNJ){Q∈PMPM⊂(MNP)⇒Q∈(MNJ)

Và {Q∈ACAC⊂(ABC)⇒Q∈(ABC){Q∈ACAC⊂(ABC)⇒Q∈(ABC)

Nên Q là điểm chung thứ hai của (MNJ) và (ABC)

Vậy LQ=(ABC)∩(MNJ)LQ=(ABC)∩(MNJ).

12 tháng 11 2021

ko hiểu nhưng thôi k vậy   >:(

12 tháng 9 2018

a) HS tự chứng minh

b) O nằm trên đường cao xuất phát từ đỉnh A của DABC

1 tháng 7 2017

a) và b) Chứng minh nhờ tính chất đường trung bình của tam giác

c) Để chứng minh MNQR là ngũ giác đều ta cần chứng minh hai điều : Hình đó có tất cả các cạnh bằng nhau và có tất cả các góc bằng nhau.

Đa giác. Đa giác đều