K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2020

Áp dụng bất đẳng thức Cauchy–Schwarz dạng Engel ta có :

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{\left(1+1\right)^2}{x^2+xy+y^2+xy}=\frac{4}{\left(x+y\right)^2}\)

Cần chỉ ra \(\frac{4}{\left(x+y\right)^2}\ge4\)

Ta có : \(x+y\le1\)

=> \(\left(x+y\right)^2\le1\)

=> \(\frac{1}{\left(x+y\right)^2}\ge1\)( nghịch đảo )

=> \(\frac{4}{\left(x+y\right)^2}\ge4\)( nhân 4 vào cả hai vế )

=> đpcm

Đẳng thức xảy ra <=> x = y = 1/2

NV
23 tháng 10 2019

\(A=\frac{4}{4x^2+9y^2}+\frac{4}{12xy}+\frac{52}{2x.3y}\)

\(A\ge\frac{16}{4x^2+9y^2+12xy}+\frac{52.4}{\left(2x+3y\right)^2}=\frac{224}{\left(2x+3y\right)^2}\ge\frac{224}{4}=56\)

\(A_{min}=56\) khi \(\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)

21 tháng 3 2020

a)\(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow2\cdot\left(x^3+1\right)+7x\cdot\left(x+1\right)=0\)

\(\Leftrightarrow2\cdot\left(x+1\right)\cdot\left(x^2+x+1\right)+7x\cdot\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\cdot\left[2\cdot\left(x^2+x+1\right)+7x\right]=0\)

\(\Leftrightarrow\left(x+1\right)\cdot\left(2x^2-2x+2+7x\right)=0\)

\(\Leftrightarrow\left(x+1\right)\cdot\left(2x^2+5x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\cdot\left(2x+1\right)\cdot\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+1=0\\2x+1=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=\frac{-1}{2}\\x=-2\end{matrix}\right.\)

21 tháng 3 2020

b)\(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)

\(\Leftrightarrow\frac{x+1}{65}+\frac{x+3}{63}-\frac{x+5}{61}-\frac{x+7}{59}=0\)

\(\Leftrightarrow\left(\frac{x+1}{65}+1\right)+\left(\frac{x+3}{63}+1\right)-\left(\frac{x+5}{61}+1\right)-\left(\frac{x+7}{59}+1\right)=0\)

\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}-\frac{x+66}{61}-\frac{x+66}{59}=0\)

\(\Leftrightarrow\left(x+66\right)\cdot\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)=0\)

\(\Rightarrow x+66=0\)

\(\Rightarrow x=-66\)