K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2017

1/ Ta có xy=-6

Với x=-6 => y=1

x=-3 => y=2 

x= -2 => y=3

x=-1 => y=6

2/ Ta có x=y+4 

Thay x=y+4 vào bt, ta được 

<=> y+4-3/y-2 =3/2

<=> y+1/y-2=3/2

<=> 2(y+1)=3(y-2)

<=> 2y +2 = 3y - 6

<=> 3y - 2y= 2+ 6

<=> y= 8 <=> x= 12

3/ -4/8 = x/-10 <=> x= (-4)*(-10)/8=5

-4/8 = -7/y <=> y=(-7)*8/(-4) =14

-4/8 = z/-24 <=> z= (-4)*(-24)/8=12

9 tháng 10 2016

Ta có:

\(\begin{cases}\frac{x}{5}=\frac{y}{-7}\\\frac{y}{4}=\frac{z}{15}\end{cases}\)\(\Rightarrow\begin{cases}\frac{x}{-20}=\frac{y}{28}\\\frac{y}{28}=\frac{z}{105}\end{cases}\)\(\Rightarrow\frac{x}{-20}=\frac{y}{28}=\frac{z}{105}=\frac{3y}{84}=\frac{4z}{420}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x}{-20}=\frac{y}{28}=\frac{z}{105}=\frac{3y}{84}=\frac{4z}{420}=\frac{x+3y-4z}{-20+84-420}=\frac{18}{-356}=\frac{-9}{178}\)

\(\Rightarrow\begin{cases}x=\frac{-9}{178}.\left(-20\right)=\frac{90}{89}\\y=\frac{-9}{178}.28=\frac{-126}{89}\\z=\frac{-9}{178}.105=\frac{-945}{178}\end{cases}\)

Vậy \(x=\frac{90}{89};y=\frac{-126}{89};z=\frac{-945}{178}\)

15 tháng 11 2017

Đề không sai đâu !!

18 tháng 10 2018

Bài a làm gì có z

13 tháng 9 2017

a, \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)

=> x=8,y=6,z=18

b, \(\hept{\begin{cases}\frac{x}{y}=\frac{9}{7}\Rightarrow\frac{x}{9}=\frac{y}{7}\\\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\end{cases}\Rightarrow\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3}\)

=> x=-27,y=-21,z=-9

c, \(\frac{6x}{11}=\frac{9y}{2}=\frac{18z}{5}\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\Rightarrow\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)

=> x=165,y=20,z=25

18 tháng 11 2018

\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)

\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)

\(\Rightarrow x=165;y=20;z=25\)

6 tháng 8 2016

a) Aps dụng tính chất các dãy tỉ số bằng nhau, ta có:

x/4  =y/3 = z/9 = 3y/9 = 4z/36 = (x-3y+4z)/(4-9+36)= 62/31 = 2

=> x=2.4=8

     y=2.3=6

     z=2.9=18

6 tháng 8 2016

a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)

ADTCCDTSBN, ta có: 

\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)

\(\Rightarrow x=2.4=8\)

\(y=2.3=6\)

\(z=2.9=18\)

b) Đề có nhầm lẫn j k nhỉ =.=

c) \(5x=8y=20z\Leftrightarrow\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}\)

ADTCCDTSBN, ta có:

\(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}=\frac{x+y+z}{\frac{1}{5}+\frac{1}{8}+\frac{1}{20}}=-\frac{15}{\frac{3}{8}}=-40\)

\(\Rightarrow x=-40:5=-8\)

\(y=-40:8=-5\)

\(z=-40:20=-2\)

29 tháng 9 2016

Đăng từng bài thôi chứ bạn

29 tháng 9 2016

mất công lém

11 tháng 10 2016

a) Đặt 2x - 1 / 5 = 3y + 2 / 4 = 4z - 3 / 5 = k

=> 2x = 5k + 1; 3y = 4k - 2; 4z = 5k + 3

=> 2x - 3y + 4z = 5k + 1 - 4k - 2 + 5k + 3 = 6k + 2 = 9

=> 6k = 9 - 2 = 7

=> k = 7 : 6 = 7/6

2x =5k

11 tháng 10 2016

Xĩn lỗi, mik ấn nhầm

9 tháng 7 2019

\(a,\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

\(\frac{x}{10}=2\Rightarrow x=10.2=20\)

\(\frac{y}{6}=2\Rightarrow y=2.6=12\)

\(\frac{z}{21}=2\Rightarrow z=21.2=42\)

\(d,\frac{x}{2}=\frac{y}{3}=k\)\(\Rightarrow x=2k;y=3k\)

\(\Rightarrow ab=2k.3k=6k^2=54\)

\(\Rightarrow k^2=9\Leftrightarrow k=3\)

\(\frac{x}{2}=3\Rightarrow x=6\)

\(\frac{y}{3}=3\Rightarrow y=9\)

9 tháng 7 2019

a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\)   =>  \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)

Vậy x = 20; y = 12; z = 42

b) Ta có: \(\frac{x}{3}=\frac{y}{4}\) => \(\frac{x}{15}=\frac{y}{20}\)

          \(\frac{y}{5}=\frac{z}{7}\)  => \(\frac{y}{20}=\frac{z}{28}\)

=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{125}{62}=\frac{125}{62}\)

=> \(\hept{\begin{cases}\frac{x}{15}=\frac{125}{62}\\\frac{y}{20}=\frac{125}{62}\\\frac{z}{28}=\frac{125}{62}\end{cases}}\)  =>  \(\hept{\begin{cases}x=\frac{125}{62}.15=\frac{1875}{62}\\y=\frac{125}{62}.20=\frac{1250}{31}\\z=\frac{125}{62}.28=\frac{1750}{31}\end{cases}}\)

Vậy ...