Cho \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}\). Tính \(\frac{4a+2b-c}{a-b-c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi A = \(\frac{4a+2b-c}{a-b-c}\)
Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\Rightarrow\hept{\begin{cases}a=2k\\b=5k\\c=7k\end{cases}}\)
=>A = \(\frac{4a+2b-c}{a-b-c}=\frac{8k+10k-7k}{2k-5k-7k}=\frac{11k}{-10k}=\frac{-11}{10}\)
b, Ta có: \(\hept{\begin{cases}x^2\ge0\\\left|y-3\right|\ge0\end{cases}\forall x,y\Rightarrow A=x^2+\left|y-3\right|+5}\ge5\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2=0\\\left|y-3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=3\end{cases}}}\)
Vậy MinA = 5 khi x = 0 và y = 3
c, xy + 3x - y = 6
<=> xy + 3x - y - 3 = 3
<=> x(y + 3) - (y + 3) = 3
<=> (x - 1)(y + 3) = 3
=> x - 1 và y + 3 thuộc Ư(3) = {1;-1;3;-3}
Ta có bảng:
x-1 | 1 | -1 | 3 | -3 |
y+3 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 4 | -2 |
y | 0 | -6 | -2 | -4 |
Vậy các cặp (x;y) là (2;0) ; (0;-6) ; (4;-2) ; (-2;-4)
a, Gọi A = 4a+2b−ca−b−c
Đặt a2 =b5 =c7 =k⇒{
a=2k |
b=5k |
c=7k |
=>A = 4a+2b−ca−b−c =8k+10k−7k2k−5k−7k =11k−10k =−1110
b, Ta có: {
x2≥0 |
|y−3|≥0 |
∀x,y⇒A=x2+|y−3|+5≥5
Dấu "=" xảy ra khi {
x2=0 |
|y−3|=0 |
⇒{
x=0 |
y=3 |
Vậy MinA = 5 khi x = 0 và y = 3
c, xy + 3x - y = 6
<=> xy + 3x - y - 3 = 3
<=> x(y + 3) - (y + 3) = 3
<=> (x - 1)(y + 3) = 3
=> x - 1 và y + 3 thuộc Ư(3) = {1;-1;3;-3}
Ta có bảng:
x-1 | 1 | -1 | 3 | -3 |
y+3 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 4 | -2 |
y | 0 | -6 | -2 | -4 |
Vậy các cặp (x;y) là (2;0) ; (0;-6) ; (4;-2) ; (-2;-4)
Áp dụng thủ thuật 1-2-3 và tính chất a + b = a . b , ta có :
1 + 1 = 1 . 1 ( loại ) , 2 + 2 = 2 . 2 ( giữ ) , 3 + 3 = 3 . 3 ( loại )
Vậy với \(a,b,c\ne0;\frac{ab}{a+b}=\frac{bc}{b+c}+\frac{ac}{a+c}\) , => Đẳng thức xảy ra khi x + y = x . y tức là a = b = c = 2 .
\(\left(1+\frac{a}{2b}\right)\left(1+\frac{b}{3c}\right)\left(1+\frac{c}{4a}\right)\)
\(\Rightarrow\left(1+\frac{1}{2\cdot1}\right)\left(1+\frac{1}{3\cdot1}\right)\left(1+\frac{1}{4\cdot1}\right)\)
\(=\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\)
\(=\frac{5}{2}\)( vì \(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}=\frac{3\cdot4\cdot5}{2\cdot3\cdot4}=\frac{5}{2}\))
Tìm các số a, b, c biết rằng :
1 . Ta có: \(\frac{a}{20}=\frac{b}{9}=\frac{c}{6}=\frac{a}{20}=\frac{2b}{9.2}=\frac{4c}{6.4}=\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)
Ap dụng tính chất dãy tỉ số bắng nhau ta dược :
\(\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)=\(\frac{a-2b+4c}{20-18+24}=\frac{13}{26}=\frac{1}{3}\)( do x+2b+4c=13)
Nên : a/20=1/3\(\Leftrightarrow\) a=1/3.20 \(\Leftrightarrow\)a=20/3
b/9=1/3 \(\Leftrightarrow\) b=1/3.9 \(\Leftrightarrow\) b=3
c/6=1/3 \(\Leftrightarrow\) c=1/3.6 \(\Leftrightarrow\) c= 2
Bài này không đúng nhé. Với a = b = c = 1 thì bất đẳng thức sai. Tuy nhiên bài này đúng theo chiều ngược lại.
Ta sẽ chứng minh bất đẳng thức phụ sau đây \(x^2+y^2+z^2\ge xy+yz+zx\)
\(< =>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)
\(< =>2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)*đúng*
Đặt \(\left\{2a+2b-c;2b+2c-a;2c+2a-b\right\}\rightarrow\left\{x;y;z\right\}\)
Vì a,b,c là ba cạnh của 1 tam giác nên x,y,z dương
Ta có : \(x^2+y^2+z^2=9\left(a^2+b^2+c^2\right)\)
\(x+y=c+a+4b\); \(y+z=a+b+4c\); \(z+x=b+c+4a\)
Bất đẳng thức cần chứng minh quy về : \(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\)
Áp dụng bất đẳng thức AM-GM ta có :
\(\frac{x^3}{y+z}+\frac{x\left(y+z\right)}{4}\ge2\sqrt{\frac{x^3.x\left(y+z\right)}{\left(y+z\right)4}}=2\sqrt{\frac{x^4}{4}}=2\frac{x^2}{2}=x^2\)
\(\frac{y^3}{x+z}+\frac{y\left(x+z\right)}{4}\ge2\sqrt{\frac{y^3.y\left(x+z\right)}{\left(x+z\right)4}}=2\sqrt{\frac{y^4}{4}}=2\frac{y^2}{2}=y^2\)
\(\frac{z^3}{x+y}+\frac{z\left(x+y\right)}{4}\ge2\sqrt{\frac{z^3.z\left(x+y\right)}{\left(x+y\right)4}}=2\sqrt{\frac{z^4}{4}}=2\frac{z^2}{2}=z^2\)
Cộng theo vế các bất đẳng thức cùng chiều ta được :
\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{x\left(y+z\right)}{4}+\frac{y\left(x+z\right)}{4}+\frac{z\left(x+y\right)}{4}\ge x^2+y^2+z^2\)
\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx+xy+yz+zx}{4}\ge x^2+y^2+z^2\)
\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx}{2}\ge x^2+y^2+z^2\)
\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge x^2+y^2+z^2-\frac{xy+yz+zx}{2}\)
Sử dụng bất đẳng thức phụ \(x^2+y^2+z^2\ge xy+yz+zx\)khi đó ta được :
\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{y+x}\ge x^2+y^2+z^2-\frac{x^2+y^2+z^2}{2}\)
\(< =>\frac{x^3}{y+z}+\frac{y^3}{z+x}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\left(đpcm\right)\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z< =>a=b=c\)
Vậy ta có điều phải chứng minh
Đặt \(\frac{a}{2}\)\(=\)\(\frac{b}{5}\)\(=\)\(\frac{c}{7}\)\(=\)K
=> a=2K
b=5k
c=7k
=> \(\frac{4a+2b-c}{a-b-c}\)= \(\frac{8k+10k-7k}{2k-5k-7k}\)= \(\frac{k.\left(8+10-7\right)}{k.\left(2-5-7\right)}\)= \(\frac{8+10-7}{2-5-7}\)= \(\frac{-11}{10}\)
Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\)
\(\Rightarrow a=2k\)
\(b=5k\)
\(c=7k\)
\(\Rightarrow\frac{4a+2b-c}{a-b-c}\)
\(=\frac{4\left(2k\right)+2\left(5k\right)-7k}{2k-5k-7k}\)
\(=\frac{\left(8+10-7\right)k}{\left(2-5-7\right)k}\)
\(=-\frac{11}{10}\)
Vậy ...