K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2016

Ta có: \(2^m+2^n=2^{m+n}\)

<=>\(2^m+2^n=2^m.2^n\)

<=>\(1+2^n-1=2^m\left(2^n-1\right)\)

<=>\(\left(2^m-1\right)\left(2^n-1\right)=1\)

Do m,n là số tự nhiên =>\(\hept{\begin{cases}2^m-1=1\\2^n-1=1\end{cases}}\)<=>\(\hept{\begin{cases}2^m=2\\2^n=2\end{cases}}\)<=>\(\hept{\begin{cases}m=1\\n=1\end{cases}}\)

5 tháng 10 2016

\(m=1\)và \(n=1\)

15 tháng 3 2020

đặt \(p^{2m}+q^{2m}=a^2\)

Xét p,q cùng lẻ thì \(p^{2m}\)chia 4 dư 1 ; \(q^{2m}\)chia 4 dư 1

\(\Rightarrow p^{2m}+q^{2m}\)chia 4 dư 2

\(\Rightarrow a^2\)chia 4 dư 2 ( vô lí vì SCP chia 4 ko thể dư 2 hoặc 3 )

\(\Rightarrow\)ít nhất 1 trong 2 số p,q có 1 số bằng 2

giả sử p = 2

\(\Rightarrow4^m=a^2-q^{2n}=\left(a-q^n\right)\left(a+q^n\right)\)

\(\Rightarrow\hept{\begin{cases}a-q^n=4^x\\a+q^n=4^y\end{cases}\Rightarrow2.q^n=4^y-4^x⋮4}\)

\(\Rightarrow q^n⋮2\)

\(\Rightarrow q⋮2\)

\(\Rightarrow q=2\)

Thay p = q = 2 vào, ta được :

\(4^m+4^n=a^2\)

giả sử \(m\ge n\)

Đặt \(m=n+z\)

Ta có : \(4^{n+z}+4^n=4^n\left(4^z+1\right)=a^2\)

vì \(4^n\)là số chính phương nên \(4^z+1\)là số chính phương

Dễ thấy \(4^z+1=\left(2^z\right)^2+1\)không là số chính phương nên suy ra phương trình vô nghiệm

24 tháng 3 2020

Đáp số nè: m=2, n=1, p=2, q=3 và các hoán vị.

Nếu ai cần thì cứ nhắn tin vs mik nha.

4 tháng 12 2021

m và n thuộc N*

31 tháng 1 2019

Ta có : m và n là các số nguyên dương

Và \(A=\frac{2+4+6+...+2m}{m}=\frac{2.\left(1+2+....+m\right)}{m}=\frac{2.\left(m-1\right).m}{m}=2.\left(m-1\right)\)

B = \(\frac{2+4+6+...+2n}{n}=\frac{2.\left(1+2+3+...+n\right)}{n}=\frac{2.\left(n-1\right).n}{n}=2.\left(n-1\right)\)

Mà A < B 

Nên 2 . ( m - 1 ) < 2 . ( n - 1 )

Do đó m - 1 < n - 1 

Và m < n

Vậy m < n

15 tháng 9 2020

mình làm tới bước này rồi nhờ mọi người giải tiếp với với cách xét m,n cùng lẻ và m,n khác tính chẵn lẽ nhé 1

22 tháng 4 2021

a.m+2>n+2

Ta có: m >n

=>m+2 > n+2 (cộng hai vế với 2)

do đó m+2>n+2

b, -2m < -2n

Ta có: m > n

=> -2m < -2n (nhân hai vế với -2)

do đó -2m<-2n

c,2m-5>2n-5

Ta có: m>n

=>2m>2n (nhân hai vế với 2)

=>2m-5>2n-5 ( cộng hai vế với -5)

do đó 2m-5>2n-5

d,4-3m<4-3n

Ta có :m>n

=> -3m<-3n (nhân hai vế với -3)

=> 4-3m<4-3n (cộng 2 vế với 4)

7 tháng 1 2016

5/x + y/3 = 1/6
<=> (30 - 6xy)/6x = x/6x
<=> x+6xy=30
<=> x = 30/(1+6y) 
Vì x là số tự nhiên nên 1+6y phải là ước tự nhiên của 30 , vì y cũng là số tự nhiên nên chỉ có một giá trị của y thỏa là y=0
Vậy y=0, x=30

7 tháng 1 2016

/x + y/3 = 1/6
<=> (30 - 6xy)/6x = x/6x
<=> x+6xy=30
<=> x = 30/(1+6y) 
Vì x là số tự nhiên nên 1+6y phải là ước tự nhiên của 30 , vì y cũng là số tự nhiên nên chỉ có một giá trị của y thỏa là y=0
Vậy y=0, x=30
b) Đkxđ: x≠0
1/x + y/6 = 1/2
<=> (6+xy)/6x = 3x/6x
<=> 3x - xy = 6
<=> x = 6/(3-y)
Vì x là số tự nhiên nên 3-y là ước tự nhiên của 6, y cũng là số tự nhiên nên 3-y có thể là 1,2,3.
Vậy ta có các cặp số thỏa mãn là (2;0), (6;2), (3;1)

m<n

=>2m<2n

=>2m-8<2n-8

Ta có: \(m< n\)

\(\Rightarrow2m< 2n\)

\(\Rightarrow-8+2m< -8+2n\)

10 tháng 11 2017

Quá dễ Quá đơn giản

10 tháng 11 2017

giúp minh bài này với mai tớ nộp rùi

13 tháng 5 2022

`a)`

  `m > n`

`<=>2m > 2n`

`<=>2m+3 > 2n+3`

Vậy `2n+3 < 2m+3`

_________________________

`b)`

   `m > n`

`<=>-m < -n`

`<=>-m-5 < -n-5`

Vậy `-n-5 > -m-5`

13 tháng 5 2022

a)\(m>n\Rightarrow2m>2n\Rightarrow2m+3>2n+2\)

b)\(m>n\Rightarrow-m< -n\Rightarrow-m-5< -n-5\)