K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(x^4y^4-2x^2y^2\right):x^ny^n=x^{4-n}y^{4-n}-2x^{2-n}y^{2-n}\)

Để đây là phép chia hết thì 2-n>=0

hay n<=2

a: \(\dfrac{x^ny^6}{x^5y^{n-2}}=x^{n-5}y^{8-n}\)

Để đây là phép chia hết thì n-5>=0và 8-n>=0

=>5<=n<=8

b: \(\dfrac{x^6y^{n+2}}{x^ny^4z^{n-3}}=x^{6-n}y^{n-4}z^{3-n}\)

Để đây là phép chia hết thì \(\left\{{}\begin{matrix}6-n>=0\\n-4>=0\\3-n>=0\end{matrix}\right.\Leftrightarrow n\in\varnothing\)

c: \(\dfrac{\left(\dfrac{1}{2}x^5y^{7-n}\right)}{-2x^ny^3}=-\dfrac{1}{4}x^{5-n}y^{4-n}\)

Để đây là phép chia hết thì 5-n>=0 và 4-n>=0

=>n<=4

 

14 tháng 10 2019

Với mọi x, y

A chia hết cho B

<=> \(x^4y^3+3x^3y^3+x^2y^n⋮4x^ny^2\)

Khi đó: \(x^4;x^3;x^2⋮x^n\Rightarrow n\le2\)

\(y^3;y^n⋮y^2\Rightarrow n\ge2\)

Từ 2 điều trên => n = 2.

27 tháng 10 2019

nhanh

6 tháng 8 2023

\(\dfrac{1}{2}x.\dfrac{1}{4}x^2.\dfrac{x^3}{8}.2y.4y-8y^3=x.x^2.x^3.y.y.\dfrac{2.4}{2.4.8}-8y^3\\ =x^6.y^2.\dfrac{1}{8}-8y^3\)

\(=\dfrac{1}{2}\cdot\dfrac{1}{4}\cdot\dfrac{1}{8}\cdot x^3\cdot x^3\cdot8y^2-8y^3\)

\(=\dfrac{1}{8}x^6y^2-8y^3\)

7 tháng 7 2023

3, \(C=x^2-8xy+16y^2\)

\(C=x^2-2\cdot4y\cdot x+\left(4y\right)^2\)

\(C=\left(x-4y\right)^2\)

Thay \(x-4y=5\) vào C ta được:

\(C=5^2=25\)

Vậy: ......

4, \(D=9x^2+1620-12xy+4y^2\)

\(D=\left(9x^2-12xy+4y^2\right)+1620\)

\(D=\left[\left(3x\right)^2-2\cdot3x\cdot2y+\left(2y\right)^2\right]+1620\)

\(D=\left(3x-2y\right)^2+1620\)

Thay \(3x-2y=20\) vào D ta được:

\(D=20^2+1620=400+1620=2020\)

Vậy: ...

7 tháng 7 2023

3/

\(C=x^2-8xy+16y^2=x^2-2.4.xy+\left(4y\right)^2=\left(x-4y\right)^2\)

Thay x - 4y =  5 ta có: \(C=5^2=25\)

4/

\(D=9x^2-12xy+4y^2+1620\\ =\left(3x\right)^2-3.2.2xy+\left(2y\right)^2+1620\\ =\left(3x-2y\right)^2+1620\)

Thay 3x - 2y = 20. Ta có: \(D=20^2+1620=400+1620=2020\)