K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2016

từ trên ta có 

2m-2n=1024

=>m=11,n=10

5 tháng 10 2016

\(2^m\)-\(2^n\)=1024

suy ra m=11;n=10

15 tháng 3 2020

đặt \(p^{2m}+q^{2m}=a^2\)

Xét p,q cùng lẻ thì \(p^{2m}\)chia 4 dư 1 ; \(q^{2m}\)chia 4 dư 1

\(\Rightarrow p^{2m}+q^{2m}\)chia 4 dư 2

\(\Rightarrow a^2\)chia 4 dư 2 ( vô lí vì SCP chia 4 ko thể dư 2 hoặc 3 )

\(\Rightarrow\)ít nhất 1 trong 2 số p,q có 1 số bằng 2

giả sử p = 2

\(\Rightarrow4^m=a^2-q^{2n}=\left(a-q^n\right)\left(a+q^n\right)\)

\(\Rightarrow\hept{\begin{cases}a-q^n=4^x\\a+q^n=4^y\end{cases}\Rightarrow2.q^n=4^y-4^x⋮4}\)

\(\Rightarrow q^n⋮2\)

\(\Rightarrow q⋮2\)

\(\Rightarrow q=2\)

Thay p = q = 2 vào, ta được :

\(4^m+4^n=a^2\)

giả sử \(m\ge n\)

Đặt \(m=n+z\)

Ta có : \(4^{n+z}+4^n=4^n\left(4^z+1\right)=a^2\)

vì \(4^n\)là số chính phương nên \(4^z+1\)là số chính phương

Dễ thấy \(4^z+1=\left(2^z\right)^2+1\)không là số chính phương nên suy ra phương trình vô nghiệm

24 tháng 3 2020

Đáp số nè: m=2, n=1, p=2, q=3 và các hoán vị.

Nếu ai cần thì cứ nhắn tin vs mik nha.

4 tháng 12 2021

m và n thuộc N*

23 tháng 12 2023

M = 1 + 3 + 3² + ... + 3²⁰²¹

⇒ 3M = 3 + 3² + 3³ + ... + 3²⁰²²

⇒ 2M = 3M - M

= (3 + 3² + 3³ + ... + 3²⁰²²) - (1 + 3 + 3² + ... + 3²⁰²¹)

= 3²⁰²² - 1

⇒ 2M + 1 = 3²⁰²² + 1 - 1 = 3²⁰²²

Mà 2M + 1 = 3²

⇒ 3²⁰²² = 3²ⁿ

⇒ 2n = 2022

⇒ n = 2022 : 2

⇒ n = 1011

23 tháng 12 2023

M = 1 + 3 + 32 + ... + 32021

3M = 3(1 + 3 + 32 + ... + 32021)

3M = 3 + 32 + ... + 32022

3M - M = (3 + 32 + ... + 32022) - (1 + 3 + 32 + ... + 32021)

2M = 32022 - 1 (1)

Thay (1) vào 2M + 1 = 3^2N, ta có

2M + 1 = 3^2n

=> 32022 - 1+ 1 = 3^2n

=> 32022 = 3^2n

=> 2n = 2022

=> n = 1011

Vậy n = 1011

18 tháng 7 2017

Ta có : n(2n - 3) - 2n(n + 1)

= 2n2 - 3n - 2n2 - 2n

= 2n2 - 2n2 - 3n - 2n

= -5n 

Mà n nguyên nên -5n chia hết cho 5

18 tháng 7 2017

a, Ta có 

n(2n-3)-2n(n+1)=2n2-3n-2n2-2n

=-5n chia hết cho 5

=> DPCM

b, Ta có (2m-3)(3n-2)-(3m-2)(2n-3)

Lại có  (2m-3)(3n-2)=-(3-2m)(3-2n)=(3-2m)(2n-3)

=> (2m-3)(3n-2)-(3m-2)(2n-3)=(2m-3)(3n-2)-(2m-3)(3-2n)=0

=> (2m-3)(3n-2)-(3m-2)(2n-3)=0

=>(2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5 

=> DPCM

19 tháng 2 2017

Gọi ƯCLN(3n - m; 5n + 2m) là d

Ta có: 3n - m chia hết cho d

=> 2(3n - m) chia hết cho d

=> 6n - 2m chia hết cho d  (1)

Mặt khác: 5n + 2m chia hết cho d (2)

Từ (1) và (2) suy ra: (6n - 2m) - (5n - 2m) chia hết cho d

=> n chia hết cho d (3)

Ta có: 3n - m chia hết cho d 

=> 5(3n - m) chia hết cho d

=> 15n - 5m chia hết cho d (4)

Mặt khác: 5n + 2m chia hết cho d

=> 3(5n + 2m) chia hết cho d

=> 15n + 6m chia hết cho d (5)

Từ (4) và (5) suy ra: (15n + 6m) - (15n + 5m) chia hết cho d

=> m chia hết cho d (6)

Từ (3) và (6) suy ra: d là ước chung lớn nhất của m và n

Do: ƯCLN(m,n) = 1

=> d = 1

=> ƯCLN(3n - m; 5n + 2m) = 1

13 tháng 1 2017

\(A=\left(\frac{2+2m.m}{2m}\right)=\left(\frac{2\left(1+m\right).m}{2m}\right)=1+m\)

\(B=\left(\frac{2+2n.n}{2n}\right)=\left(\frac{2\left(1.n\right).n}{2n}\right)=1.n\)

Do đó A < b => 1 + m < 1 + n => m < n

13 tháng 1 2017

\(A=\frac{\left(2+2m\right).m}{2m}=\frac{2\left(1+m\right).m}{2m}=1+m\)

\(B=\frac{\left(2+2n\right).n}{2n}=\frac{2\left(1+n\right).n}{2n}=1+n\)

do A < b => 1 + m < 1 +n => m < n