Tìm m,n biết:
2m = 2n +1024
GIÚP MÌNH VỚI!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(p^{2m}+q^{2m}=a^2\)
Xét p,q cùng lẻ thì \(p^{2m}\)chia 4 dư 1 ; \(q^{2m}\)chia 4 dư 1
\(\Rightarrow p^{2m}+q^{2m}\)chia 4 dư 2
\(\Rightarrow a^2\)chia 4 dư 2 ( vô lí vì SCP chia 4 ko thể dư 2 hoặc 3 )
\(\Rightarrow\)ít nhất 1 trong 2 số p,q có 1 số bằng 2
giả sử p = 2
\(\Rightarrow4^m=a^2-q^{2n}=\left(a-q^n\right)\left(a+q^n\right)\)
\(\Rightarrow\hept{\begin{cases}a-q^n=4^x\\a+q^n=4^y\end{cases}\Rightarrow2.q^n=4^y-4^x⋮4}\)
\(\Rightarrow q^n⋮2\)
\(\Rightarrow q⋮2\)
\(\Rightarrow q=2\)
Thay p = q = 2 vào, ta được :
\(4^m+4^n=a^2\)
giả sử \(m\ge n\)
Đặt \(m=n+z\)
Ta có : \(4^{n+z}+4^n=4^n\left(4^z+1\right)=a^2\)
vì \(4^n\)là số chính phương nên \(4^z+1\)là số chính phương
Dễ thấy \(4^z+1=\left(2^z\right)^2+1\)không là số chính phương nên suy ra phương trình vô nghiệm
Đáp số nè: m=2, n=1, p=2, q=3 và các hoán vị.
Nếu ai cần thì cứ nhắn tin vs mik nha.
M = 1 + 3 + 3² + ... + 3²⁰²¹
⇒ 3M = 3 + 3² + 3³ + ... + 3²⁰²²
⇒ 2M = 3M - M
= (3 + 3² + 3³ + ... + 3²⁰²²) - (1 + 3 + 3² + ... + 3²⁰²¹)
= 3²⁰²² - 1
⇒ 2M + 1 = 3²⁰²² + 1 - 1 = 3²⁰²²
Mà 2M + 1 = 3²
⇒ 3²⁰²² = 3²ⁿ
⇒ 2n = 2022
⇒ n = 2022 : 2
⇒ n = 1011
M = 1 + 3 + 32 + ... + 32021
3M = 3(1 + 3 + 32 + ... + 32021)
3M = 3 + 32 + ... + 32022
3M - M = (3 + 32 + ... + 32022) - (1 + 3 + 32 + ... + 32021)
2M = 32022 - 1 (1)
Thay (1) vào 2M + 1 = 3^2N, ta có
2M + 1 = 3^2n
=> 32022 - 1+ 1 = 3^2n
=> 32022 = 3^2n
=> 2n = 2022
=> n = 1011
Vậy n = 1011
Ta có : n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= 2n2 - 2n2 - 3n - 2n
= -5n
Mà n nguyên nên -5n chia hết cho 5
a, Ta có
n(2n-3)-2n(n+1)=2n2-3n-2n2-2n
=-5n chia hết cho 5
=> DPCM
b, Ta có (2m-3)(3n-2)-(3m-2)(2n-3)
Lại có (2m-3)(3n-2)=-(3-2m)(3-2n)=(3-2m)(2n-3)
=> (2m-3)(3n-2)-(3m-2)(2n-3)=(2m-3)(3n-2)-(2m-3)(3-2n)=0
=> (2m-3)(3n-2)-(3m-2)(2n-3)=0
=>(2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5
=> DPCM
Gọi ƯCLN(3n - m; 5n + 2m) là d
Ta có: 3n - m chia hết cho d
=> 2(3n - m) chia hết cho d
=> 6n - 2m chia hết cho d (1)
Mặt khác: 5n + 2m chia hết cho d (2)
Từ (1) và (2) suy ra: (6n - 2m) - (5n - 2m) chia hết cho d
=> n chia hết cho d (3)
Ta có: 3n - m chia hết cho d
=> 5(3n - m) chia hết cho d
=> 15n - 5m chia hết cho d (4)
Mặt khác: 5n + 2m chia hết cho d
=> 3(5n + 2m) chia hết cho d
=> 15n + 6m chia hết cho d (5)
Từ (4) và (5) suy ra: (15n + 6m) - (15n + 5m) chia hết cho d
=> m chia hết cho d (6)
Từ (3) và (6) suy ra: d là ước chung lớn nhất của m và n
Do: ƯCLN(m,n) = 1
=> d = 1
=> ƯCLN(3n - m; 5n + 2m) = 1
\(A=\left(\frac{2+2m.m}{2m}\right)=\left(\frac{2\left(1+m\right).m}{2m}\right)=1+m\)
\(B=\left(\frac{2+2n.n}{2n}\right)=\left(\frac{2\left(1.n\right).n}{2n}\right)=1.n\)
Do đó A < b => 1 + m < 1 + n => m < n
\(A=\frac{\left(2+2m\right).m}{2m}=\frac{2\left(1+m\right).m}{2m}=1+m\)
\(B=\frac{\left(2+2n\right).n}{2n}=\frac{2\left(1+n\right).n}{2n}=1+n\)
do A < b => 1 + m < 1 +n => m < n
từ trên ta có
2m-2n=1024
=>m=11,n=10
\(2^m\)-\(2^n\)=1024
suy ra m=11;n=10