K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2016

\(x^3-y^3-6xy\)=\(x^3-3x^2y+3xy^2-y^3-6xy+3x^2y-3xy^2\)=\(\left(x-y\right)^3+3xy\left(-2+x-y\right)\)

Thay x-y=2 vào biểu thức.

=>\(2^3+3xy\left(-2+2\right)\)=\(8+0=8\)

5 tháng 10 2016

 x3 - y3 - 6xy = \(\left(x-y\right)\left(x^2+xy+y^2\right)-6xy\)

thay x - y = 2 vào 

\(2\left(x^2+xy+y^2\right)-6xy=2x^2+2xy+2y^2-6xy=2x^2-4xy+2y^2=2\left(x^2-2xy+y^2\right)=2\left(x-y\right)^2\)thay x- y = 2

2 . 2^2 = 2 . 4 = 8

22 tháng 12 2021

a: \(=\left(x-y\right)^3=100^3=1000000\)

5 tháng 5 2017

a) A = -1;                        b) B = ( x   +   y ) 3  =1.

15 tháng 10 2023

a) \(A=x^3+y^3+3xy\)

\(=x^3+y^3+3xy\left(x+y\right)\) (do \(x+y=1\))

\(=x^3+3x^2y+3xy^2+y^3\)

\(=\left(x+y\right)^3\) \(=1\)

b) \(B=x^3-y^3-3xy\)

\(=x^3-y^3-3xy\left(x-y\right)\) (do \(x-y=1\))

\(=x^3-3x^2y+3xy^2-y^3\)

\(=\left(x-y\right)^3\) \(=1\)

 

C=3[(x-y)^3+3xy(x-y)]-3[(x-y)^2+4xy]

=3(2^3+6xy)-3(4+4xy)

=24+18xy-12-12xy

=6xy+12

5 tháng 10 2023

Bài 5

a) A = -x³ + 6x² - 12x + 8

= -x³ + 3.(-x)².2 - 3.x.2² + 2³

= (-x + 2)³

= (2 - x)³

Thay x = -28 vào A ta được:

A = [2 - (-28)]³

= 30³

= 27000

b) B = 8x³ + 12x² + 6x + 1

= (2x)³ + 3.(2x)².1 + 3.2x.1² + 1³

= (2x + 1)³

Thay x = 1/2 vào B ta được:

B = (2.1/2 + 1)³

= 2³

= 8

5 tháng 10 2023

Bài 6

a) 11³ - 1 = 11³ - 1³

= (11 - 1)(11² + 11.1 + 1²)

= 10.(121 + 11 + 1)

= 10.133

= 1330

b) Đặt B =  x³ - y³ = (x - y)(x² + xy + y²)

= (x - y)(x² - 2xy + y² + 3xy)

= (x - y)[(x - y)² + 3xy]

Thay x - y = 6 và xy = 9 vào B ta được:

B = 6.(6² + 3.9)

= 6.(36 + 27)

= 6.63

= 378

`#3107.101107`

`D = x^3 - y^3 - 3xy` biết `x - y - 1 = 0`

Ta có:

`x - y - 1 = 0`

`=> x - y = 1`

`D = x^3 - y^3 - 3xy`

`= (x - y)(x^2 + xy + y^2) - 3xy`

`= 1 * (x^2 + xy + y^2) - 3xy`

`= x^2+ xy + y^2 - 3xy`

`= x^2 - 2xy + y^2`

`= x^2 - 2*x*y + y^2`

`= (x - y)^2`

`= 1^2 = 1`

Vậy, với `x - y = 1` thì `D = 1`

________

`E = x^3 + y^3` với `x + y = 5; x^2 + y^2 = 17`

`x + y = 5`

`=> (x + y)^2 = 25`

`=> x^2 + 2xy + y^2 = 25`

`=> 2xy = 25 - (x^2 + y^2)`

`=> 2xy = 25 - 17`

`=> 2xy = 8`

`=> xy = 4`

Ta có:

`E = x^3 + y^3`

`= (x + y)(x^2 - xy + y^2)`

`= 5 * [ (x^2 + y^2) - xy]`

`= 5 * (17 - 4)`

`= 5 * 13`

`= 65`

Vậy, với `x + y = 5; x^2 + y^2 = 17` thì `E = 65`

________

`F = x^3 - y^3` với `x - y = 4; x^2 + y^2 = 26`

Ta có:

`x - y = 4`

`=> (x - y)^2 = 16`

`=> x^2 - 2xy + y^2 = 16`

`=> (x^2 + y^2) - 2xy = 16`

`=> 2xy = (x^2 + y^2) - 16`

`=> 2xy = 26 - 16`

`=> 2xy = 10`

`=> xy = 5`

Ta có:

`F = x^3 - y^3`

`= (x - y)(x^2 + xy + y^2)`

`= 4 * [ (x^2 + y^2) + xy]`

`= 4 * (26 + 5)`

`= 4*31`

`= 124`

Vậy, với `x - y = 4; x^2 + y^2 = 26` thì `F = 124.`

5 tháng 12 2016

x3-y3-3xy

= x3-3x2y+3xy2-y3-3xy+3x2y-3xy2

= (x-y)3+3xy(x-y-1)

=1+0

=1

h cho minh nha

6 tháng 12 2016

x3-y3-3xy=(x-y)(x2+xy+y2)-3xy

thay x-y=1 =>x2+xy+y2-3xy

                 =x2-2xy+y2

                 =(x-y)2

thay x-y=1=> 12=1

đúng thì cho

24 tháng 9 2021

Ta có: \(x-y=5\Rightarrow\left(x-y\right)^2=25\)

\(\Rightarrow x^2+y^2-2xy=25\)

\(\Rightarrow15-2xy=25\)

\(\Rightarrow2xy=-10\Rightarrow xy=-5\)

\(M=x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=5\left(15-5\right)=5.10=50\)

15 tháng 10 2023

\(a,A=x^2+y^2\\=x^2-2xy+y^2+2xy\\=(x-y)^2+2xy\\=2^2+2\cdot1\\=4+2\\=6\)

\(b,x+y=1\\\Leftrightarrow (x+y)^3=1^3\\\Leftrightarrow x^3+3x^2y+3xy^2+y^3=1\\\Leftrightarrow x^3+3xy(x+y)+y^3=1\\\Leftrightarrow x^3+3xy\cdot1+y^3=1\\\Rightarrow A=1\)

15 tháng 10 2023

a) Ta có:

\(x-y=2\)

\(\Rightarrow\left(x-y\right)^2=2^2\)

\(\Rightarrow x^2-2xy+y^2=4\)

Mà: \(xy=1\)

\(\Rightarrow\left(x^2+y^2\right)-2\cdot1=4\)

\(\Rightarrow x^2+y^2=4+2\)

\(\Rightarrow x^2+y^2=6\)

b) Ta có: 

\(x+y=1\)

\(\Rightarrow\left(x+y\right)^3=1^3\)

\(\Rightarrow x^3+3x^2y+3xy+y^3=1\)

\(\Rightarrow x^3+3xy\left(x+y\right)+y^3=1\) 

Mà: x + y = 1

\(\Rightarrow x^3+3xy\cdot1+y^3=1\)

\(\Rightarrow x^3+3xy+y^3=1\)

18 tháng 7 2023

\(A=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)
\(A=2.2\left(x^2+xy+y^2\right)-3x^2-6xy-3y^2\)
\(A=4x^2+4xy+4y^2-3x^2-6xy-3y^2\)
\(A=x^2-2xy+y^2\)
\(A=\left(x-y\right)^2\)
\(A=2^2=4\)