K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2020

Ta có : \(\left(\sqrt{a+b}\right)^2=a+b\)                                              (1)

          : \(\left(\sqrt{a+b}\right)^2=a+b+2\sqrt{ab}\)                  ( 2 )

Với a , b dương nên \(2\sqrt{ab}>0\) ,do đó từ ( 1) và ( 2 ) suy ra : 

 \(\left(\sqrt{a+b}\right)^2< \left(\sqrt{a}+\sqrt{b}\right)\)hay \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)=> đpcm

4 tháng 4 2020

\(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)

\(\Leftrightarrow\left(\sqrt{a+b}\right)^2< \left(\sqrt{a}+\sqrt{b}\right)^2\)

\(\Leftrightarrow a+b< a+b+2\sqrt{ab}\)

\(\Leftrightarrow2\sqrt{ab}>0\left(luondung\right)\)

Vậy ta có đpcm

19 tháng 11 2017

dùng bđt cauchy chứng minh biểu thức trên >=2 rồi chứng minh dấu = không xảy ra

NV
24 tháng 11 2018

Áp dụng BĐT Bunhia:

\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{\left(1+1+1\right)\left(4a+1+4b+1+4c+1\right)}\)

\(\Rightarrow\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{3.\left(4\left(a+b+c\right)+3\right)}=\sqrt{21}< \sqrt{25}=5\)

Vậy \(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}< 5\)

7 tháng 1 2018

C, d của VT đâu b