so sánh tổng A với 4 biết:
A = \(\frac{2005}{2006}\)+ \(\frac{2006}{2007}\)+\(\frac{2007}{2008}\)+\(\frac{2008}{2005}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=1+1/2001+1+1/2002+1+1/2003+...+1+1/2008=8+1/2001+1/2002+1/2003+...+1/2008>8
\(\frac{2002}{2001}+\frac{2003}{2002}+\frac{2004}{2003}+\frac{2005}{2004}+\frac{2006}{2005}+\frac{2007}{2006}+\frac{2008}{2007}+\frac{2009}{2008}>8\)
mỗi số hạng trong biểu thức A đều nhỏ hơn 1 mà có 15 số nên tổng A sẽ nhỏ hơn 15
ta thay tong tren <1+1+1+1+1+1+1+1+1+1+1+1+1+1+1
hay tong tren be hon 15
Ta thấy:
2005/2006 = 1 - 1/2006
2006/2007 = 1 - 1/2007
2007/2008 = 1 - 1/2008
2008/2005 = 1 + 3/2005
Mà: 1/2005 > 1/2006 > 1/2007 > 1/2008
=> 3/2005 - 1/2006 - 1/2007 - 1/2008 > 0
=> 2005/2006 + 2006/2007 + 2007/2008 + 2008/2005 > 4
ta có: \(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2006}\)
A = \(1-\frac{1}{2007}+1-\frac{1}{2008}+1-\frac{1}{2009}+1+\frac{3}{2006}\)
A= \(4\)\(+\frac{3}{2006}-\left(\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)
Do 1/2007 < 1/2006 ; 1/2008<1/2006 ; 1/2009<1/2006=> 1/2007 + 1/2008 + 1/2009 < 1/2006 + 1/2006 + 1/2006
Mà 1/2006 + 1/2006 + 1/2006 = 3/2006
=> 3/2006 -( 1/2007 + 1/2008 + 1/2009) > 0
=> \(4+\frac{3}{2006}-\left(\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)>4\)
=> A > 4
Ta có:\(\frac{2006}{2007}< 1\)
\(\frac{2007}{2008}< 1\)
\(\frac{2008}{2009}< 1\)
\(\frac{2009}{2006}>1\)\(\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2006}< 4\)
Gọi a là tử số, b là mẫu số của phân số A
a = \(\frac{2008}{1}\)+ \(\frac{2007}{2}\)+ \(\frac{2006}{3}\)+ ... + \(\frac{1}{2008}\)
Dãy số a có (2008 - 1) : 1 + 1 = 2008 số. Và a = ( \(\frac{2008}{1}\)+ \(\frac{1}{2008}\)) x (2008 : 2)
b = \(\frac{1}{2}\)+ \(\frac{1}{3}\)+ \(\frac{1}{4}\)+ ... + \(\frac{1}{2009}\)
Dãy số b có (2009 - 2) : 1 + 1 = 2008 số. Và b = (\(\frac{1}{2}\)+ \(\frac{1}{2009}\)) x (2008 : 2)
A = [ ( \(\frac{2008}{1}\)+ \(\frac{1}{2008}\)) x (2008 : 2)] : [ (\(\frac{1}{2}\)+ \(\frac{1}{2009}\)) x (2008 : 2)] = ( \(\frac{2008}{1}\)+ \(\frac{1}{2008}\)) : (\(\frac{1}{2}\)+ \(\frac{1}{2009}\))
A = \(\frac{\text{2008 x2008 + 1}}{2008}\)x \(\frac{2x2009+2}{2x2009}\)
A = 2008
\(A=\frac{2005}{2006}+\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2005}=1-\frac{1}{2006}+1-\frac{1}{2007}+1-\frac{1}{2008}+1+\frac{1}{2005}\)
\(=\left(1+1+1+1\right)+\left(\frac{1}{2005}-\frac{1}{2006}-\frac{1}{2007}-\frac{1}{2008}\right)
kết quả = 1 nhớ kết bạn với cụ