K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc BHC=góc BKC=90 độ

=>BHKC nội tiếp

b: Gọi Elà giao cuả BK với CH

góc EHK=góc EBC=1/2*sđ cung MC

=>góc EHK=góc ENM

=>HK//MN

a: góc BHC=góc BKC=90 độ

=>BHKC nội tiếp

b: Gọi Elà giao cuả BK với CH

góc EHK=góc EBC=1/2*sđ cung MC

=>góc EHK=góc ENM

=>HK//MN

a: góc AKB=góc AHB=90 độ

=>AKHB nội tiếp đường tròn đường kính AB

=>Tâm là trung điểm của AB

b: Gọi giao của AH và BK là M

ABHK là tứ giác nội tiếp

=>góc AHK=góc ABK

=>góc AHK=góc ADE

=>HK//DE

21 tháng 5 2018

trời ơi rối quá , ai biết làm thì làm đi 

26 tháng 5 2018

A B C E F M O K N H

a) Xét tứ giác BFEC: ^BFC=^BEC=900 => Tứ giác BFEC là tứ giác nội tiếp đường tròn (đpcm).

b) Dễ thấy tứ giác ABKC nội tiếp đường tròn (O) => ^CAK=^CBK hay ^CAN=^CBK (1)

AK là đường kính của (O); B nằm trên (O) => AB\(\perp\)BK

Mà CF\(\perp\)AB => BK//CF => ^CBK=^BCF (2)

(1); (2) => ^CAN=^BCF. Mà ^BCF=^CAH (Cùng phụ ^ABC) => ^CAN=^BAH hay ^CAN=^FAM

Lại có: ^ACN=^AHE (Cùng phụ ^HAC) 

Dễ chứng minh tứ giác AFHE nội tiếp đường tròn => ^AHE=^AFE

=> ^ACN=^AFE. Hay ^ACN=^AFM

Xét \(\Delta\)AMF và \(\Delta\)ANC: ^ACN=^AFM; ^CAN=^FAM => \(\Delta\)AMF ~ \(\Delta\)ANC (g.g)

=> \(\frac{AM}{AN}=\frac{MF}{NC}\)(*)

=> ^AMF=^ANC => 180- ^AMF=180- ^ANC => ^FMH=^CNK

Tứ giác ABKC nội tiếp (O) => ^ABC=^AKC. Mà ^ABC=^AHF (Cùng phụ ^BAH)

=> ^AKC=^AHF hay ^NKC=^MHF.

Xét \(\Delta\)NCK và \(\Delta\)MFH: ^NKC=^MHF; ^CNK=^FMH => \(\Delta\)NKC ~ \(\Delta\)MFH (g.g)

=> \(\frac{HM}{NK}=\frac{FM}{NC}\)(**)

Từ (*) và (**) => \(\frac{AM}{AN}=\frac{HM}{NK}\Rightarrow\frac{AM}{HM}=\frac{AN}{NK}\)=> MN//HK (Định lí Thales đảo) (đpcm).

30 tháng 4 2021

A B C D H F E G I M O K

a) Xét Δ AFH vuông tại F => A, F, H thuộc đường tròn đường kính AH

ΔAGH vuông tại G => A, G, H thuộn đường tròn đường kính AH

=> Tứ giác AFHG nội tiếp đường tròn đường kính AH

CMTT => BGFC nội tiếp đường tròn đường kính BC

b) Do I là tâm đường tròn ngoại tiếp tứ giác AFHG => I là trung điểm AH

M là tâm đường tròn ngoại tiếp tứ giác BGFC => M là trrung điểm BC

Xét ΔAHG vuông tại G, trung tuyến GI => GI = IA = IH => ΔIAG cân tại I => \(\widehat{IAG}=\widehat{IGA}\)

CMTT => \(\widehat{MCG}=\widehat{MGC}\). Mà \(\widehat{MCG}=\widehat{IAG}\) (cùng phụ \(\widehat{GBC}\))                => \(\widehat{MGC}=\widehat{IGA}\)

=> \(\widehat{IGA}+\widehat{IGH}=\widehat{MGC}+\widehat{IGH}=\widehat{IGM}=90^o\) => IG ⊥ MG

=> MG là tiếp tuyến đường tròn tâm I

c) Kẻ đường kính AK của đường tròn (O) => \(\widehat{ACK}=90^o\) (góc nội tiếp chắn nửa đường tròn) => ΔACK vuông tại C => \(\widehat{KAC}=90^o-\widehat{AKC}\)

ΔABE vuông tại E => \(\widehat{EAB}=90^o-\widehat{ABE}\) hay \(\widehat{DAB}=90^o-\widehat{ABC}\) 

Xét đường tròn (O) có \(\widehat{ABC}=\widehat{AKC}\) (cùng chắn \(\stackrel\frown{AC}\))

=> \(90^o-\widehat{AKC}=90^o-\widehat{ABC}\) => \(\widehat{DAB}=\widehat{KAC}\) => \(\stackrel\frown{BD}=\stackrel\frown{KC}\) (góc nội tiếp bằng nhau chắn các cung bằng nhau)

=> BD = KC (hai cung bằng nhau căng hai dây bằng nhau)

Xét ΔAKC vuông tại C, theo định lý Pytago có: AC2 + KC2 = AK2

Xét ΔAEC vuông tại E, theo định lý Pytago có: EA2 + EC2 = AC

ΔBED vuông tại E, theo định lý Pytago có: EB2 + ED2 = BD2

Mà BD = KC (cmt) => BD2 = KC2 => EB2 + ED2 = KC

=> EA2 + EB2 + EC2 + ED2 = AC2 + KC2 = AK2 = (2R)2 = 4R2