cho tam giác abc vuông tại a ,đường phân giác BE.kẻ EH vuông góc với bc(HϵBC)
chứng minh rằng :
a,tam giác abc= tam giác HBE
b,BEvuông góc BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABE\) và \(\Delta HBE\) có:
\(\widehat{BAE}=\widehat{BHE}=90^0\)
\(BE\) chung
\(\widehat{ABE}=\widehat{HBE}\) (tính chất phân giác)
\(\Rightarrow\Delta ABE=\Delta HBE\) (ch - gn)
b) Do \(\Delta ABE=\Delta HBE\) \(\Rightarrow AB=BH\Rightarrow\Delta ABH\) cân tại \(B\)
Mà \(BE\) là phân giác \(\Rightarrow BE\) là đường cao \(\Rightarrow BE\perp AH\)
a) xét tam giác ABE vuông tại A và tam giác HBE vuông tại H có
gócABE = gócHBE ( BE là phân giác gócABH)
BE chung
\(=>\)tam giác vuông ABE = tam giác vuông HBE ( cạnh huyền góc nhọn )
\(=>\)AE=EH ( 2 cạnh tương ứng)
b) xét tam giác AKE vuông tại A và tam giác HCE vuông tại H có
AE=EH ( theo câu a)
góc AEK = HEC ( 2 góc đối đỉnh )
\(=>\)tam giác vuông AKE = tam giác vuông HCE ( cạnh góc vuông - góc nhọn kề cạnh ấy)
\(=>\)EK=EC ( 2 cạnh tương ứng )
tham khảo
a) Xét tam giác vuông ABE và tam giác vuông HBE (^BAE = ^BHE = 90o)
BE chung
^ABE = ^HBE (BE là phân giác ^ABC)
=> tam giác vuông ABE = tam giác vuông HBE (ch - gn)
b) Ta có: AE = HE (tam giác vuông ABE = tam giác vuông HBE)
=> E thuộc đường trung trực của AH (1)
Ta có: AB = HB (tam giác vuông ABE = tam giác vuông HBE)
=> B thuộc đường trung trực của AH (2)
Từ (1) và (2) => BE là đường trung trực của AH (đpcm)
c) Ta có: ^BEK = ^BEA + ^AEK
^BEC = ^BEH + ^HEC
Mà ^BEA = ^BEH (tam giác vuông ABE = tam giác vuông HBE)
^AEK = ^HEC (2 góc đối đỉnh)
=> ^BEK = ^BEC
Xét tam giác BEK và tam giác BEC:
^BEK = ^BEC (cmt)
^KBE = ^CBE (BE là phân giác ^ABC)
BE chung
=> tam giác BEK = tam giác BEC (g - c - g)
=> EK = EC (cặp cạnh tương ứng)
a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABE=ΔHBE(cạnh huyền-góc nhọn)
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔABE=ΔHBE
b: góc HEC+góc AEH=180 độ
góc AEH+góc ABH=180 độ
=>góc HEC=góc ABH=2*góc ABE
c: AE=EH
EH<EC
=>AE<EC
Xét ΔABE và ΔHBE : có :
^ BAE = ^ BHE = 90° ( giả thiết )
BE chung
^ABE = ^HBE ( giả thiết )
=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )
b) có ΔABE=ΔHBE ( câu a )
=> BA =BH (hai cạnh tương ứng )
gọi I là giao điểm của BE và AH .
xét ΔABI và ΔHBI:có:
BA=BH (cmt )
^ABE = ^HBE ( giả thiết )
BI chung
=>ΔABI = ΔHBE ( c-g-c )
=> AE=EH ( hai cạnh tương ứng ) (1)
=> ^BIA = ^BIH ( hai góc tương ứng )
có ^BIA + ^BIH = 180°
=> ^BIA = ^BIH = 180°:2=90°
=>BI vuông góc AH (2)
từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH
c, xét ΔAEK và ΔHEC
có: ^EAK = ^EHC = 90° (gt)
AE=EH (ΔABE=ΔHBE )
^AEK=^HEC ( hai góc đối đỉnh )
=>ΔAEK và ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )
=> EK=EC ( hai cạnh tương ứng )
d, có : AE<EK (trong Δ vuông cạnh huyền là cạnh lớn nhất )
mà EK=EC (câu c)
nên AE<EC (đpcm)
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔABE=ΔHBE
b: Sửa đề: CM BE vuông góc AH
ΔABE=ΔHBE
=>BA=BH và EA=EH
=>BE là trung trực của AH
=>BE vuông góc AH