Cho 2 tập hợp
I={ 3k+1 / k thuộc Z }
J={ 6m + 4 / m thuộc Z }
chứng minh J con I
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) - Để chứng minh rằng 2 ∈ A, ta cần tìm một số nguyên k sao cho 3k + 2 = 2. Thấy ngay k = 0 là thỏa mãn, vì 3*0 + 2 = 2. Vậy 2 ∈ A.- Để chứng minh rằng 7 ∉ B, ta cần chứng minh rằng không tồn tại số nguyên m để 6m + 2 = 7. Giả sử tồn tại m, ta có 6m = 5, nhưng đây là một phương trình vô lý vì 6 không chia hết cho 5. Vậy 7 ∉ B.- Để kiểm tra xem số 18 có thuộc tập hợp A hay không, ta cần tìm một số nguyên k sao cho 3k + 2 = 18. Giải phương trình này, ta có 3k = 16, vì 3 không chia hết cho 16 nên không tồn tại số nguyên k thỏa mãn. Vậy số 18 không thuộc
Giả sử x ∈ B, x = 6m + 4, m ∈ Z. Khi đó ta có thể viết x = 3(2m + 1) + 1
Đặt k = 2m + 1 thì k ∈ Z vào ta có x = 3k + 1, suy ra x ∈ A
Như vậy x ∈ B ⇒ x ∈ A
hay B ⊂ A
Ta có:
ab + 1 = (3m + 1)(3n + 2) + 1
= (3m + 1).3n + (3m + 1).2 + 1
= 9mn + 3n + 6m + 2 + 1
= 9mn + 3n + 6m + 3 = 3k ( đpcm)
1.
(2x+1)(x-2)-x(2x+3)+10
= 2x.(x-2)+1(x-2)-x(2x+3)+10
= 2x.x-2x.2+1.x-1.2-x.2x+x.3+10
= 2x2-4x+x-2-2x2+3x+10
= (2x2-2x2)+(-4x+x+3x)+(-2+10)
= 8
Vậy giá trị của biểu thức (2x+1)(x-2)-x(2x+3)+10 không phụ thuộc vào biến x
Ta có : \(x=3k\)
Mà \(10< x< 100\)
=> \(10< 3k< 100\)
=> \(\frac{10}{3}< k< \frac{100}{3}\)
=> \(3,3< k< 33,3\)
Mà \(k\in Z\)
=> \(4\le k\le33\)
=> \(k\in\left\{4,5,6,....,33\right\}\)
-> Tổng các phần tử của tập hợp A là : \(\frac{\left(33-4\right)}{1}+1=30\) ( phần tử )
Tập A là tập các số chia 3 dư 1
Tập B có dạng tổng quát 6m + 4 = 6m + 3 +1 => tập các số chia 3 dư 1
=> \(B\subset A\)
P/s