Cho tam giác ABC vuông tại A , có AB = 21 cm ,AC = 28 cm .Vẽ phân giác BD (D thuộc AC). Từ Dvẽ DI vuông góc với BC
a) Tính AD,DC
b) chứng minh tam giác IDC đồng dạng tam giác ABC
c) chứng minh tam giác AIC đồng dạng tam giác BDC. Từ đó suy ra AI.BC=BD.AC
b) Xét ΔIDC vuông tại I và ΔABC vuông tại A có
\(\widehat{C}\) chung
Do đó: ΔIDC\(\sim\)ΔABC(g-g)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=21^2+28^2=1225\)
hay BC=35(cm)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{AD}{21}=\dfrac{CD}{35}\)
mà AD+CD=AC(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{21}=\dfrac{CD}{35}=\dfrac{AD+CD}{21+35}=\dfrac{AC}{56}=\dfrac{28}{56}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AD}{21}=\dfrac{1}{2}\\\dfrac{CD}{35}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=\dfrac{21}{2}cm\\CD=\dfrac{35}{2}cm\end{matrix}\right.\)
Vậy: AD=10,5cm; CD=17,5cm