K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

b: ΔABC đồng dạng với ΔHAC

=>CA/CH=CB/CA

=>CA^2=CH*CB

26 tháng 3 2023

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

Do đó: ΔABC\(\sim\)ΔHAC

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

góc HBA=góc HAC

Do đó: ΔHBA\(\sim\)ΔHAC

Suy ra: HB/HA=HA/HC

hay \(HA^2=HB\cdot HC\)

a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có

\(\widehat{C}\) chung

Do đó: ΔABC\(\sim\)ΔHAC(g-g)

b) Xét tứ giác AKHI có

\(\widehat{KAI}=90^0\)

\(\widehat{HIA}=90^0\)

\(\widehat{HKA}=90^0\)

Do đó: AKHI là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

c) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HI là đường cao ứng với cạnh huyền AB, ta được:

\(AI\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HK là đường cao ứng với cạnh huyền AC, ta được:

\(AK\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)

29 tháng 8 2023

xàm vãi câu a) có 1 góc mà g-g

 

28 tháng 3 2022

Đáp án:

a) △ABC∽△HAC△ABC∽△HAC

b) EC.AC=DC.BCEC.AC=DC.BC

c) △BEC∽△ADC△BEC∽△ADC△ABE△ABE vuông cân tại A

Giải thích các bước giải:

a)

Xét △ABC△ABC và △HAC△HAC:

ˆBAC=ˆAHC(=90o)BAC^=AHC^(=90o)

ˆCC^: chung

→△ABC∽△HAC→△ABC∽△HAC (g.g)

b)

Xét △DEC△DEC và △ABC△ABC:

ˆEDC=ˆBAC(=90o)EDC^=BAC^(=90o)

ˆCC^: chung

→△DEC∽△ABC→△DEC∽△ABC (g.g)

→DCEC=ACBC→EC.AC=DC.BC→DCEC=ACBC→EC.AC=DC.BC

c)

Xét △BEC△BEC và △ADC△ADC:

DCEC=ACBCDCEC=ACBC (cmt)

ˆCC^: chung

→△BEC∽△ADC→△BEC∽△ADC (c.g.c)

Ta có: AH⊥BC,ED⊥BCAH⊥BC,ED⊥BC (gt)

→AH//ED→AH//ED

△AHC△AHC có AH//EDAH//ED (cmt)

→AEAC=HDHC→AEAC=HDHC (định lý Talet)

Mà HD=HAHD=HA (gt)

→AEAC=HAHC→AEAC=HAHC

Lại có: △ABC∽△HAC△ABC∽△HAC (cmt)

→ABAC=HAHC→ABAC=HAHC

→AEAC=ABAC→AE=AB→AEAC=ABAC→AE=AB

→△ABE→△ABE cân tại A

Có: AB⊥AE(AB⊥AC)AB⊥AE(AB⊥AC)

→△ABE→△ABE vuông cân tại A

image 

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

Do đó: ΔABC\(\sim\)ΔHAC

b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc C chung

DO đó: ΔCDE\(\sim\)ΔCAB

Suy ra: CD/CA=CE/CB

hay \(CD\cdot CB=CA\cdot CE\)

AH
Akai Haruma
Giáo viên
1 tháng 5 2023

Lời giải:

a. Xét tam giác $ABC$ và $HBA$ có:

$\widehat{B}$ chung 

$\widehat{BAC}=\widehat{BHA}=90^0$

$\Rightarrow \triangle ABC\sim \triangle HBA$ (g.g)

b. 

Xét tam giác $BHA$ và $AHC$ có:

$\widehat{BHA}=\widehat{AHC}=90^0$

$\widehat{HBA}=90^0-\widehat{BAH}=\widehat{HAC}$ 

$\Rightarrow \triangle BHA\sim \triangle AHC$ (g.g)

$\Rightarrow \frac{BH}{HA}=\frac{AH}{HC}$

$\Rightarrow AH^2=BH.CH$

c.

$BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10$ (cm) 

$S_{ABC}=\frac{AH.BC}{2}=\frac{AB.AC}{2}$

$\Rightarrow AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8$ (cm)

AH
Akai Haruma
Giáo viên
1 tháng 5 2023

Hình vẽ:

22 tháng 3 2023

Có hình vẽ ko ạ

22 tháng 2 2022

a, Xét tam giác HAC và tam giác ABC 

^C _ chung 

^AHC = ^BAC = 900

Vậy tam giác HAC ~ tam giác ABC (g.g) 

=> HC/AC=AC/BC ( cạnh tương ứng tỉ lệ ) 

=> AC^2 = HC . BC 

b, Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=20cm\)

Ta có AC^2 = HC . BC (cmt) 

Thay vào ta được \(16^2=HC.20\Rightarrow HC=\dfrac{16^2}{20}=\dfrac{64}{5}cm\)

22 tháng 2 2022

a. xét tam giác vuông HAC và tam giác vuông ABC, có:

góc C: chung

Vậy tam giác vuông HAC đồng dạng tam giác vuông ABC

b. Áp dụng định lí pitago vào tam giác vuông ABC

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{12^2+16^2}=\sqrt{400}=20cm\)

ta có: tam giác HAC đồng dạng tam giác ABC

\(\Rightarrow\dfrac{HC}{AC}=\dfrac{AC}{BC}\)

\(\Leftrightarrow HC.BC=AC^2\)

\(\Leftrightarrow20HC=16^2\)

\(\Leftrightarrow20HC=256\)

\(\Leftrightarrow HC=\dfrac{64}{5}cm\)